• 제목/요약/키워드: Energy costs

검색결과 1,156건 처리시간 0.039초

건물용 종합에너지시스템 구성요소의 최적 투자모형에 관한 연구 (A Study on the Optimal Planning Model of Building Integrated Energy System's Components)

  • 서상욱;박종성;장승찬;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.797-799
    • /
    • 1997
  • This paper presents an operation and planning model of integrated energy systems which consist of small scale cogeneration systems, thermal accumulator, ice storage and electrical energy storage systems. In the proposed planning model, an optimization of total cost which contains investment, operation, thermal shortage and salvage costs has carried out with the maximum principle based on the lifetime of each system component and unit price per capacity. From this model, optimal investment capacity per annum can be determined during the studied periods using the marginal costs according to the operation characteristics of each system component.

  • PDF

스마트 그리드 기술의 현대농업에의 활용방안 (Smart Grid Utilization of modern technology in agriculture)

  • 김광만
    • 대한안전경영과학회지
    • /
    • 제14권4호
    • /
    • pp.211-218
    • /
    • 2012
  • In this paper, we propose a system architecture of the AMI to be applied in the modern agricultural sector. Agricultural electricity costs in South Korea is very inexpensive compared with other industries. It is expected to increase oil prices to rise over the medium to long term so the facilities must to be installed for farmers in terms of energy savings and energy costs. The research and development of plant factory which can replace the ills of modern agriculture is very active. The technologies of smart grid and plat factory are good paradigm of next generation agricultural sector. Good use of smart grid technologies, the traditional energy consumption industries, agriculture sector can be self-sufficiency industry. In this article the AMI architecture is developed and it will be applicable for modern farmers plant factory.

수입중간재와 신재생에너지정책 (RPS and FIT with Transaction Costs)

  • 심성희;정경화
    • 환경정책연구
    • /
    • 제13권1호
    • /
    • pp.49-68
    • /
    • 2014
  • 우리나라는 2002년부터 시행해온 FIT를 대신하여 2012년부터 RPS로 신재생에너지 정책을 전환하였다. RPS와 FIT는 국내 신재생에너지의 보급 확대 및 기술개발을 촉진하기 위해 도입되었다. 우리는 신재생에너지정책수단(RPS와 FIT)이 관련 기업들의 중간재 선택에 미치는 영향을 분석하였다. 기업들이 선택할 수 있는 중간재는 국내재와 비용경쟁력이 있으나 거래비용이 존재하는 수입재를 고려하였다. 거래비용이 크지 않을 경우에는 RPS가 초기 시장경쟁력이 낮은 국내 신재생에너지 생산업자에게 유리한 환경을 조성하여 해외 신재생에너지기업과 경쟁할 수 있는 여건을 조성할 수 있는 것으로 분석되었다. 이것은 시장경쟁력을 갖춘 해외 기업과 비교하여 상대적으로 비용 경쟁력이 낮은 국내 녹색에너지산업을 고려하면 RPS가 한국정부의 최적의 선택임을 함축한다.

  • PDF

단독주택용 지열원 열펌프 시스템 경제성 분석 (Economic Analysis of a Residential Ground-Source Heat Pump System)

  • 손병후;강신형;임효재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.515-518
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these ad- vantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conven- tional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

Role of membranes in bioelectrochemical systems

  • Kokabian, Bahareh;Gude, Veera Gnaneswar
    • Membrane and Water Treatment
    • /
    • 제6권1호
    • /
    • pp.53-75
    • /
    • 2015
  • This paper provides an overview of the role of membranes in bioelectrochemical systems (BESs). Bioelectrochemical systems harvest clean energy from waste organic sources by employing indigenous exoelectrogenic bacteria. This energy is extracted in the form of bioelectricity or valuable biofuels such as ethanol, methane, hydrogen, and hydrogen peroxide. Various types of membranes were applied in these systems, the most common membrane being the cation exchange membrane. In this paper, we discuss three major bioelectrochemical technology research areas namely microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The operation principles of these BESs, role of membranes in these systems and various factors that affect their performance and economics are discussed in detail. Among the three technologies, the MFCs may be functional with or without membranes as separators while the MECs and MDCs require membrane separators. The preliminary economic analysis shows that the capital and operational costs for BESs will significantly decrease in the future due mainly to differences in membrane costs. Currently, MECs appear to be cost-competitive and energy-yielding technology followed by MFCs. Future research endeavors should focus on maximizing the process benefits while simultaneously minimizing the membrane costs related to fouling, maintenance and replacement.

S-FEAR: Secure-Fuzzy Energy Aware Routing Protocol for Wireless Sensor Networks

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1436-1457
    • /
    • 2018
  • Secure routing services in Wireless Sensor Networks (WSNs) are essential, especially in mission critical fields such as the military and in medical applications. Additionally, they play a vital role in the current and future Internet of Things (IoT) services. Lightness and efficiency of a routing protocol are not the only requirements that guarantee success; security assurance also needs to be enforced. This paper proposes a Secure-Fuzzy Energy Aware Routing Protocol (S-FEAR) for WSNs. S-FEAR applies a security model to an existing energy efficient FEAR protocol. As part of this research, the S-FEAR protocol has been analyzed in terms of the communication and processing costs associated with building and applying this model, regardless of the security techniques used. Moreover, the Qualnet network simulator was used to implement both FEAR and S-FEAR after carefully selecting the following security techniques to achieve both authentication and data integrity: the Cipher Block Chaining-Message Authentication Code (CBC-MAC) and the Elliptic Curve Digital Signature Algorithm (ECDSA). The performance of both protocols was assessed in terms of complexity and energy consumption. The results reveal that achieving authentication and data integrity successfully excluded all attackers from the network topology regardless of the percentage of attackers. Consequently, the constructed topology is secure and thus, safe data transmission over the network is ensured. Simulation results show that using CBC-MAC for example, costs 0.00064% of network energy while ECDSA costs about 0.0091%. On the other hand, attacks cost the network about 4.7 times the cost of applying these techniques.

Energy Expenditure in Normal-Weight and Overweight Korean Middle-Aged Women

  • Kim, Wha-Young;Cha, Jin-Young
    • Nutritional Sciences
    • /
    • 제4권1호
    • /
    • pp.34-38
    • /
    • 2001
  • The purpose of this study was to compare the energy expenditure of normal-weight and overweight Korean middle-aged women (40-60 yr). Middle-aged oveweight ($BMI\;{\geq}\;25$, n= 20) and normal-weight women were ($BMI\;{\leq}\;23$, n = 20) were recruited in Seoul. Anthropometric measurements, body composition, energy intake, daily activity time, and energy costs of some daily activities were measured. Energy expenditure at rest and while reading the newspaper, washing dishes, mopping the floor, and walking on a treadmill at 1.0, 2.0, 3.5mph were measured by indirect calorimeter and total daily energy expenditure was estimated by summation of energy costs of different activities. The overweight group had significantly higher values of body weight, triceps skinfold thickness, thigh circumference, waist circumference, hip circumference, BMI, WTR, WHR, body surface area, percentage body fat, fat mass, fat free mass (FFM), and muscle mass compared to normal-weight group. The energy intakes of both groups were close to RDA and other nutrient intake status was also satisfactory. There were no significant differences in intakes of energy and nutrients between the two groups. Overweight subjects showed lower energy expenditure per kg body weight for reading the newspaper, washing dishes and mopping the floor, and walking on a treadmill at 2.0 and 3.5 mph, however, energy expenditure per kg FFM did not differ between the two groups. Daily energy expenditure for all activities was significantly higher in the overweight compared to the normal-weight group due to higher body weight. Both overweight and normal-weight groups showed negative energy balance between energy intake and energy expenditure, and there was no significant difference in energy balance between the two roups. Total daily energy expenditure correlated highly with FFM and body surface area. The result of present study does not offer an explanation on the energy imbalance and weight gain of overweight women.

  • PDF

A Distributed Power Allocation Scheme for Base Stations Powered by Retailers with Heterogeneous Renewable Energy Sources

  • Jeon, Seung Hyun;Lee, Joohyung;Choi, Jun Kyun
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.746-756
    • /
    • 2016
  • Owing to the intermittent power generation of renewable energy sources (RESs), future wireless cellular networks are required to reliably aggregate power from retailers. In this paper, we propose a distributed power allocation (DPA) scheme for base stations (BSs) powered by retailers with heterogeneous RESs in order to deal with the unreliable power supply (UPS) problem. The goal of the proposed DPA scheme is to maximize our well-defined utility, which consists of power satisfaction and unit power costs including added costs as a non-subscriber, based on linear and quadratic cost models. To determine the optimal amount of DPA, we apply dual decomposition, which separates the master problem into sub-problems. Optimal power allocation from each retailer can be obtained by iteratively coordinating between the BSs and retailers. Finally, through a mathematical analysis, we show that the proposed DPA can overcome the UPS for BSs powered from heterogeneous RESs.

지역냉방 열원의 수요모형에 관한 연구 (A Study on the Demand Modelling for District Cooling Energy Source)

  • 김진형;최병렬
    • 자원ㆍ환경경제연구
    • /
    • 제11권4호
    • /
    • pp.633-657
    • /
    • 2002
  • This study presents a demand modelling for landfill gas, which is used as alternative energy source for district cooling business. By analyzing the cost minimizing behavior of producer facing with three alternative energy sources such as electricity, cooling heat water, and gas, a demand function for landfill gas is derived from the optimal operating time of gas fired production facility, and estimated using unpublished data, which are associated with Seoul city's development plan for Sang-am area. The estimation results repeals that Seoul City could supply the land-fill gas of 13.76 million cubic meters each year at the price of about 16 won per cubic meters. However, if the investment costs associated with installation of gas collecting facilities are treated as sunk costs, annual amount of gas supplied is expected to increase to 14.22 million cubic meters at a lower unit price of 14.76 won.

  • PDF