• Title/Summary/Keyword: Energy costs

Search Result 1,175, Processing Time 0.028 seconds

Variation of Indoor Air Temperature by using Hot Water Piping in Greenhouse (온수배관에 의한 온실 내부의 온도변화)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Bae, Seoung-Beom;Kim, Hyeon-Tae;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • This study was performed to obtain a heat saving effect and enhance the efficiency of a greenhouse by using a hot water piping in order to minimize the operating costs of a greenhouse as oil prices continue to rise. This method also reduces the likelihood of accidents caused by snowdrifts in regions with heavy snowfall. In general, the experimental plot was $2.0{\sim}6.0^{\circ}C$ higher than the control plot. When the skylight felt was opened, the minimum temperature was in the range of $3.0{\sim}12.0^{\circ}C$. Therefore, we judged that damage caused by snowdrifts may be prevented partly by active heating. The temperature difference inside of the greenhouse by height was insignificant. The maximum heating load of the greenhouse according to crop was respectively about $37,000kcal{\cdot}h^{-1}$ and $41,700kcal{\cdot}h^{-1}$. During the experiment, the heat value of each designed temperature in the range of the minimum ambient temperature $-11.9{\sim}4.0^{\circ}C$ was about 95,000~322,000 kcal and it was in the range of $6,050{\sim}20,900kcal{\cdot}h^{-1}$. If it is compared with the maximum heating load, it can be shown that about 15~56% of the heating energy can be supplied. The total heat value and the amount of power consumption were 2,629,025 kcal and 677.3 kWh respectively during the experiment. If it is heated with diesel, a fossil fuel, the consumption during the experiment was 291 L and the cost was 331,700won. Total cost of using electric power was about 24,400 won and it is shown that it is about 7.5% of the cost of diesel consumption. Also, if the total amount of power consumption is converted into energy, it is approximately 582,200 kcal and the energy was just about 22% of the total heat value.

Effects of Light Intensity, Light Quality and Photoperiod for Growth of Perilla in a Closed-type Plant Factory System (완전제어형 식물공장에서 광량과 광질, 광주기가 들깨의 생장에 미치는 영향)

  • Sul, Seonggwan;Baek, Youngtaek;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.180-187
    • /
    • 2022
  • In order to select suitable light in a plant factory, electric energy use efficiency and light use efficiency should be considered simultaneously to consider operating costs as well as quantitative and functional aspects. The growth characteristics, electric energy use efficiency, light use efficiency by light intensity, LED ratio, and photoperiod conditions were compared together. Light intensity is 60, 130, 230, and 320 µmol·m-2·s-1 treatments, and light quality is the mixing ratio of red light and blue light 8:2, 6:4, 4:6, and 2:8 treatments. Photoperiod is 9, 12, 15, and 18 hours treatments based on the daytime. In the light intensity experiment, the growth rate increased as the light intensity increased, but there was no significant difference in the light use efficiency. When comparing the leaf fresh weight per power consumption, only the 320 µmol·m-2·s-1 treatment group showed significantly low efficiency, and there was no significant difference in the other treatments, so 230 µmol·m-2·s-1, which produced the most, was the most efficient. In the light quality experiment, the ratio of red light and blue light was measured to be high at the same time as the growth rate and light use efficiency in RB 8:2, and there was no significant difference in color difference and flavonoids content, so a Red:Blue ratio of 8:2 was the most suitable condition. In the photoperiod experiment, the longer the photoperiod, the higher the growth rate. However, there was no significant difference in the growth rate over 12 hours of daytime, so 12 hours considering the light consumption efficiency was a suitable condition. Based on the above results, LED light environmental conditions for perilla growth in plant factories were light intensity, light quality, and day length of 230 µmol·m-2·s-1 or more, 8:2, and 12 hours or more, respectively.

A Study on Recycling Capacity Assessment of Livestock Manure (가축분뇨의 자원화 용량 평가에 관한 연구)

  • Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.311-320
    • /
    • 2008
  • Reusing livestock manure have various advantages in securing soil organic resources, and since the costs needed for converting them into liquefied fertilizers are relatively moderate compared to normal treatment, such methods are necessary. In this study, the Recycling Capacity Assessment of Gyeonggi-do was carried out by comparing between the fertilizer demands for specific crops based on the cultivation areas and the amount of fertilizer resources that are generated from livestock manure. From this assessment, the possibility of obtaining resources by converting livestock manure into fertilizers were evaluated. The amount generated of Livestock Manure in Gyeonggi-do were evaluated by applying the emission units to the number of livestock manure. And from the amount generated of Livestock Manure, the amount of fertilizer produced from Livestock Manure were calculated by using the fertilizer a component rate. When considering the amount of fertilizer produced from Livestock Manure based on the type of livestock, N 6,626 ton/year, $P_2O_5$ 1,824 ton/year, $K_2O$ 4,480 ton/year were produced from milk cow manure, while N 5,247 ton/year, $P_2O_5$ 2,772 ton/year, $K_2O$ 2,879 ton/year, were produced from beef cattle manure. N 14,924 ton/year, $P_2O_5$ 7,205 ton/year, $K_2O$ 6,750 ton/year were produced from pigs and N 12,651 ton/year, $P_2O_5$ 4,458 ton/year, $K_2O$ 5,542 ton/year were produced by chickens. So the total amount of fertilizers that can be obtained from livestock manure were 3,668 ton/year Nitrogen, 16,259 ton/year phosphate and 19,651 ton/year kalium. And the total fertilizer demands in Gyeonggi-do were Nitrogen 27,200 ton/year, Phosphate 8,853 ton/year, and kalium 13,211 ton/year respectively. Nitrogen which had higher demands than production quantities were considered as limitation factors in crop growth. So the Recycling Capacity Assessment was carried out mainly based on Nitrogen. Since the Nitrogen quantities that can be provided by recycling livestock manure were 3,532 ton/year lesser than the Nitrogen demands, it is estimated that it would be desirable to convert livestock manure into resources. But in order to properly convert the entire livestock manure into organic resources, the seasonal situation that effects the nitrogen demands of crops along with the regional effects due to the industrial structures should be seriously analyzed. In addition, a system that can effectively produce and manage fertilizer should be established.

Processing Effects of Feeds in Swine - Review -

  • Chae, B.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.597-607
    • /
    • 1998
  • Processing is generally employed to alter the physical and chemical properties of feeds used in pig diets, using hammer/roller mills, pellet mills and extruders/expanders. The reported optimum particle sizes of corn are approximately $500{\mu}m$, $500-700{\mu}m$, $400-600{\mu}m$, for nursery, growing-finishing, and breeder pigs respectively. Optimum particle size of grains are affected by diet complexity. There was a trend towards reducing particle size in order to increase ADG in pigs fed a simple diet, though such was not the case for pigs fed a complex diet. Uniformity of particle size also affects the nutritional values of swine feeds. Uniform particle sizes would consistently give greater nutrient digestibilities. In terms of pellet quality, it is reported that a higher incidence of fmes in pelleted feeds has a direct correlation with poorer feed conversion ratio in pigs. Particle and pellet sizes are also very important for pelleting in terms of grinding, digestibility, stomach ulceration and pellet durability. A particle size of $600{\mu}m$, or slightly less, seemed optimal for com in fmishing pigs, and the 5/32 in. diameter pellets supported the best efficiencies of gain during nursery and finishing phases. Extruder and/or expander processes would allow the feed industry an increased flexibility to utilize a wider spectrum of feed ingredients, and improve pellet quality of finished feeds. It would appear that extruded or expanded diets containing highly digestible ingredients have little effect on the growth performance of pigs, and the feeding values of the feeds over pelleted diets were not improved as pigs grew. The extruder or expander is much more effective than a pelletizer in salmonella control. Gastric ulcerations and/or keratinizations were consistently reported in pigs fed mash and processed diets containing finely ground grains, whereas carcass quality was not affected by diet processing methods such as pelleting, extruding or expanding. In corn- or sorghum-based diets, the electrical energy consumption is 4-5 times higher in the expanding than in the pelleting process. But the expander's processing cost was half of that shown by an extruder. Finally, the decision of which feed processing technology to adopt would depend on the processing cost, and any potential improvement in growth performance and digestibilities of nutrients should offset the increased operating and capital costs related to the extruder/expander technology over mash or pelleting processes in pigs.

Variation of Thermal Resistance of LED Module Embedded by Thermal Via (Thermal Via 구조 LED 모듈의 열저항 변화)

  • Shin, Hyeong-Won;Lee, Hyo-Soo;Bang, Jae-Oh;Yoo, Se-Hoon;Jung, Seung-Boo;Kim, Kang-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.95-100
    • /
    • 2010
  • LED (Light Emitting Diode) is 85% of the applied energy is converted into heat that is already well known. Lately, LED chips increasing the capacity as result delivered to increase the heat of the LED products and module that directly related to life span and degradation. Thus, in industry the high-power LED chip to control the heat generated during the course of the study and the existing aluminum, copper adhesives, and uses MLC (Metal clad laminate) structures using low-cost FR4 and copper CCL (Copper Clad Laminate) to reduce costs by changing to a study being carried out. In this study, using low-cost CCL Class, mounted 1W LED chip to analyze changes in the thermal resistance. In addition, heat dissipation in the CCL to facilitate a variety of thermal via design outside of the heat generated by the LED chip to control and facilitate the optimal structure of the heat dissipation is suggested.

Establishing A Database for the Management and Utilization of Geological Research Data: Focusing on the Classification of Rocks and Minerals and 3D Models (지질 연구 자료의 관리와 활용을 위한 데이터베이스 구축: 암석, 광물의 분류와 3D 모델을 중심으로)

  • Ko, Bokyun;Lee, Chang-Wook;Park, Sungjae;Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • A great number of geological research data have been produced by individually conducted researchers and then personally stored in domestic universities and research institutes. However, it is difficult to share data with other researchers owing to low and limited accessibility. The purpose of this study is to systematically establish metadata for inaccessible data, to manage them collectively and to provide opportunities for utilizing the data to those who require efficient research methods. Approximately 1,000 geological specimens (900 rocks and fossils, 100 thin sections) were gathered, along with their metadata such as high-resolution photographs, classification, name, owner, address, and geographical coordinates of the sample site, to establish their features. Additionally, 3D modeling data for 100 rocks and fossils were generated. On the basis of this study, it is possible for researchers to access and share crucial geological data that have a high potential to be lost and have been neglected in restricted spaces; by avoiding the wasted time, energy, and costs caused by repetitive collection of data, researchers may perform effective research and achieve qualified and competitive research results. Moreover, vulnerable and important geological data in the field can be protected from damage caused by indiscriminate, repetitive collection of specimens that have previously been secured. Through the establishment of additional metadata concerning the diversity of rocks, fossils, and thin sections kept at other universities and research institutes, much more data can be recognized, leading to advanced research results. Furthermore, specialized comparison and analysis of basic mineralogy and petrology knowledge are anticipated, based on the use of the metadata.

Performance Evaluation for the A/O Pure-Oxygen Biofilm (POB) Process on the Removal of Organics and TKN in the Industrial Wastewater (혐기/호기 순산소 생물막공법에 의한 산업폐수의 유기물 및 TKN 제거 성능평가)

  • Jang, Am;Kim, Hong Suck;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.837-847
    • /
    • 2000
  • For the treatment of wastewaters generated from beer industry and petrochemical company with high organic and nitrogen contents, laboratory scale of A/O Pure-Oxygen Biofilm (POB) process was developed and studied by means of the comparative economic analysis with extended aeration process. When the wastewater of beer company was initially treated by the A/O POB process in the ranges of 70 to 150 mg TOC/L diluted with tap water, higher than 92% of TOC removal was accomplished in the all ranges. In case of petrochemical wastewater, the initial TOC removal was as low as 52%, though, it increased to 86% after 32 days of operation and also the TKN removal marked 71% after 27 days. Continuous high removal rates were monitored in both the TOC and TKN parameters during the experimental period. Due to the cost for PSA (Pressure Swing Adsorption) setting and biomass supporting media installation, the initial construction cost of A/O POB process was 2.9 times higher than that of extended aeration process. However, the advantages such as low sludge production, no need for sludge recycling and low energy consumption allow the A/O POB process to have 2.5 times lower operation and maintenance costs. Consequently, in the long term of operation, it is likely that A/O POB process would show higher performance as well as cost effectiveness compared to extended aeration process.

  • PDF

A Study of Leisure Programs for Hemiplegia in Community Rehabilitation Center in Ulsan (울산지역 장애인복지관을 이용하는 뇌졸중 장애인의 여가활동에 관한 연구)

  • Cho, Moo-Sin
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.2 no.2
    • /
    • pp.15-23
    • /
    • 2012
  • Objective : The study is to investigate current state of leisure activity in people with stroke (including leisure activity that people with stroke participate and hope, the reason why people with stroke paticipate in leisure activity, the cost that spent in leisure activity, and leisure activity satisfaction) on community rehabilitation center. Method : Frequency analysis were performed with the SPSS 12.0 statistics package program. Result : First, the findings showed that leisure activity participated most of people with stroke disabled appear as 'swimming', and appear sequence 'gate ball', 'yoga', 'energy gymnastics' on sports leisure activity. Second, the findings showed that leisure activity costs are fifth thousand won a month on average, most of people with stroke experienced satisfactory state in leisure activity. Third, the findings showed that leisure activity appeared to satisfaction 63.1% people with stroke disabled used the community rehabilitation center. Conclusion : First, The community rehabilitation center must develop leisure activity for people with stroke. Second, Leisure activity needs to support financial affairs. Third, leisure activity need professor for body function improve. Fourth, leisure activity must participates with the community sociaty.

  • PDF

Effect of Drying Temperature on High Quality Functional Processed Products of Chinese Matrimony Vine (가공용 소재로서 구기자나무 잎의 건조온도 조건)

  • Ju, Jung Il;Lee, Jeong;Paik, Seung Woo;Yun, Tug Sang;Park, Young Chun;Lee, Bo Hee;Kim, Hyun Ho;Lee, Hee Bong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.468-472
    • /
    • 2015
  • Background : Chinese matrimony vine (Lycium chinense Mill.) is a deciduous shrub belonging to the Solanaceae. The leaves are used as an alternative raw material replacing dried fruits associated with high production costs in many industires. The aim of this experiment was to determine the effect of drying temperature on the leaves used in the manufacture of functional products. Methods and Results : The leaves of Chinese matrimony vine were harvested when the plant height reached 60 - 70 cm in the spring and treated at four different temperatures ($40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$ and $70^{\circ}C$). The time to reach the desiccation state of 20% was 63 h at $40^{\circ}C$, 37 h at $50^{\circ}C$, 17 h at $60^{\circ}C$ and 11 h at $70^{\circ}C$. The drying rate per hour was 1.28% at $40^{\circ}C$, 2.25% at $50^{\circ}C$, 4.94% at $60^{\circ}C$ and 7.60% at $70^{\circ}C$. No significant difference were observed in ash, crude fat, polyphenol or rutin content of treated samples. Crude protein and betaine content decreased with higher dry temperatures. Nitrogen free extract of the treated samples increased with higher drying temperatures. Conclusions : Taking into consideration drying time, drying rate, color value, energy consumption and functional ingredients is advantageous to dry the leaves of the Chinese matrimony vine at $60^{\circ}C$ using a hot air agricultural dryer.

DETERMINATION OF MOISTURE AND NITROGEN ON UNDRIED FORAGES BY NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS)

  • Cozzolino, D.;Labandera, M.;Inia La Estanzuela
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1620-1620
    • /
    • 2001
  • Forages, both grazed and conserved, provide the basis of ruminant production systems throughout the world. More than 90 per cent of the feed energy consumed by herbivorous animals world - wide were provided by forages. With such world - wide dependence on forages, the economic and nutritional necessity of been able to characterize them in a meaningful way is vital. The characterization of forages for productive animals is becoming important for several reasons. Relative to conventional laboratory procedures, Near Infrared Reflectance Spectroscopy (NIRS) offers advantages of simplicity, speed, reduced chemical waste, and more cost-effective prediction of product functionality. NIR spectroscopy represents a radical departure from conventional analytical methods, in that entire sample of forage is characterized in terms of its absorption properties in the near infrared region, rather than separate subsamples being treated with various chemicals to isolate specific components. This forces the analyst to abandon his/her traditional narrow focus on the sample (one analyte at a time) and to take a broader view of the relationship between components within the sample and between the sample and the population from which it comes. forage is usually analysed by NIRS in dry and ground presentation. Initial success of NIRS analysis of coarse forages suggest a need to better understand the potential for analysis of minimally processed samples. Preparation costs and possible compositional alterations could be reduced by samples presented to the instrument in undried and unground conditions. NIRS has gained widespread acceptance for the analysis of forage quality constituents on dry material, however little attention has been given to the use of NIRS for chemical determinations on undried and unground forages. Relatively few works reported the use of NIRS to determine quality parameters on undried materials, most of them on both grass and corn silage. Only two works have been found on the determination of quality parameters on fresh forages. The objectives of this paper were (1) to evaluate the use of NIRS for determination of nitrogen and moisture on undried and unground forage samples and (2) to explore two mathematical treatments and two NIR regions to predict chemical parameters on fresh forage. Four hundred forage samples (n: 400) were analysed in a NIRS 6500 instrument (NIR Systems, PA, USA) in reflectance mode. Two mathematical treatments were applied: 1,4,4,1 and 2,5,5,2. Predictive equations were developed using modified partial least squares (MPLS) with internal cross - validation. Coefficient of determination in calibration (${R^2}_{CAL}$) and standard error in cross-validation (SECV) for moisture were 0.92 (12.4) and 0.92 (12.4) for 1,4,4,1 and 2,5,5,2 respectively, on g $kg^{-1}$ dry weight. For crude protein NIRS calibration statistics yield a (${R^2}_{CAL}$) and (SECV) of 0.85 (19.8) and 0.85 (19.6) for 1,4,4,1 and 2,5,5,2 respectively, on a dry weight. It was concluded that NIRS is a suitable method to predict moisture and nitrogen on fresh forage without samples preparation.

  • PDF