• Title/Summary/Keyword: Energy converter

Search Result 1,447, Processing Time 0.03 seconds

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration (한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구)

  • Kim, Eun Soo;Oh, Kwang Myung;Park, Hongrae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • The Korean government is aiming to produce 20% of the electricity using renewable energy sources by 2030. Ocean renewable energy sources which are abundant in South Korea can do an important role to achieve the goal. This paper introduces a tidal current energy converter utilizing flow induced vibrations which can efficiently work even in the currents slower than 1.0m/s and suggests optimal designs of the tidal energy converter based on speeds of the tidal currents in seven different coastal regions in South Korea. Moreover, the theoretical annual energy production by the tidal converter is estimated at theses costal areas. The total amount of the annual energy production by the tidal energy converter is predicted as 221.77 TWh which is equivalent to 42.3% of the electric consumption of South Korea in 2013. The result shows that the tidal current energy converter can be an important role to achieve the goal of the Korean government.

Experimental Study on Performance of Wave Energy Converter System with Counterweight

  • Han, Sung-Hoon;Jo, Hyo-Jae;Lee, Seung-Jae;Hwang, Jae-Hyuck;Park, Ji-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In order to convert wave energy into large quantities of high-efficiency power, it is necessary to study the optimal converter system appropriate for the environment of a specific open ocean area. A wave energy converter system with a counterweight converts the translation energy induced from the heave motion of a buoy into rotary energy. This experimental study evaluated the primary energy conversion efficiency of the system, which was installed on an ocean generating basin with a power take-off system. Moreover, this study analyzed the energy conversion performance according to the weight condition of the buoy, counter-weight, and flywheel by changing the load torque and wave period. Therefore, these results could be useful as basic data such as for the optimal design of a wave energy converter with a counterweight and improved energy conversion efficiency.

Low-Power Voltage Converter Using Energy Recycling Capacitor Array

  • Shah, Syed Asmat Ali;Ragheb, A.N.;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This paper presents a low-power voltage converter based on a reconfigurable capacitor array. Its energy recycling capacitor array stores the energy during a charge stage and supplies the voltage during an energy recycle stage even after the power source is disconnected. The converter reconfigures the capacitor array step-wise to boost the lost voltage level during the energy recycle stage. Its energy saving is particularly effective when most of the energy remaining in the charge capacitors is wasted by the leakage current during a longer sleep period. Simulations have been conducted using a voltage source of 500 mV to supply a $V_{DD}$ of around 800 mV to a load circuit consisting of four 32-bit adders in a 65-nm CMOS process. Results demonstrate energy recycling efficiency of 85.86% and overall energy saving of 40.14% compared to a conventional converter, when the load circuit is shortly active followed by a long sleep period.

Performance Analysis of Floating Wave Energy Converter by Using CFD (CFD를 이용한 부양식 파력발전 장치의 성능해석)

  • CHOI, Yong-Seok;LIM, Tae-Woo;KIM, You-Taek
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1303-1309
    • /
    • 2015
  • The behavior and flow characteristics of the floating wave energy converter were analyzed by using CFD in this study. The average significant wave height was confirmed as 0.5~2.0m from the Korean coastal sea area. This study was carried out by selecting a range of 1.0~1.6m in the wave height to simulate the operations of realistic wave energy converter system. The principle of a piston wave maker was applied in order to produce periodic wave. The behavior of the wave energy converter and the state of the wave overtopping according to the generated periodic wave were confirmed through the unsteady three-dimensional flow analysis. It was found that the wave overtopping rate according to the generated periodic wave was in range of the 11.6~30.0 kg/s.

A New Soft Switching Technique for Bi-directional Power Flow, Full-bridge DC-DC Converter (양방향 풀-브릿지 DC-DC 컨버터를 위한 새로운 소프트 스위칭 기법)

  • Song, Y.J.;Park, S.I.;Jeong, H.G.;Han, S.B.;Jung, B.M.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.251-255
    • /
    • 2005
  • This paper proposes a new soft switching technique for a phase-shift controlled bi-directional DC-DC converter. The described converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. A new soft switching technique is proposed, which guarantees soft switching over wide range (no load to full load) without any additional circuit components. In the proposed switching scheme, the switch pairs in the diagonal position of the converter each are turned on/off simultaneously by the switching signals with a variable duty ratio depending on the phase shift amount, and the converter is operated without freewheeling interval.

  • PDF

Split-Capacitor Dual-Active-Bridge Converter (Split-Capacitor Dual-Active-Bridge 컨버터)

  • Kim, Kisu;Park, Siho;Cha, Honnyong;Choi, Byungcho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.352-358
    • /
    • 2018
  • A split-capacitor (SC) dual-active-bridge (DAB) converter is proposed in this study. The DC-link capacitors of input and output are split in the proposed converter. The primary and secondary windings of transformer are connected to the midpoints of the DC-links. Hence, the SC DAB converter can inherently prevent transformer from saturation. Although the switch current stress of the proposed converter is twice that of the conventional DAB converter, the switch voltage stress is reduced by half. Therefore, the proposed converter can reduce switching loss and achieve high efficiency in a high switching frequency. Given the SC structure, the proposed converter can readily be connected to neutral-point-clamped- or half-bridge-type converters. The topology of the proposed converter is presented and the operating principle is analyzed in detail. A 3-kW hardware prototype was built and tested to verify the performance of the proposed converter.

Design of Soft Switched Synchronous Boost Converter

  • Dong, Zhiyong;Jeong, DongGyu;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.9-16
    • /
    • 2020
  • In this paper, we designed a soft switched synchronous boost converter, which can perform discharging the battery, is simulated, and experimented designed. The converter operates synchronous operation to increase efficiency of the converter. The converter has very small switching losses because of its soft switching characteristics. In this paper, battery discharger with a switching frequency of 100 kHz have been designed. The designed converter also simulated and experimented to prove the converter's characteristics during synchronous operation. The simulated and experimental results have confirmed that the battery discharger had soft switching characteristics. In addition, the experimental results confirm that the converter has high efficiency characteristics. The efficiency of the circuit exceeds 97%, the efficiency of soft switched synchronous boost converter is at least 6% higher than that of conventional PWM boost converter.

Hybrid Three-Level DC/DC Converter using an Energy Recovery Snubber (에너지회생스너버를 적용한 하이브리드 3레벨 DC/DC 컨버터)

  • Heo, Ye-Chang;Joo, Jong-Seong;Harerimana, Elysee-Malon;Kim, Eun-Soo;Kang, Cheol-Ha;Lee, Seung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • This paper describes a hybrid multi-output three-level DC/DC converter suitable for a wide, high-input voltage range of an auxiliary power supply for a high-power photovoltaic generating system. In a high-power photovoltaic generating system, the solar panel output voltage depends on solar radiation quantity and varies from 450Vdc to 1100Vdc. The proposed hybrid multi-output three-level DC/DC converter, which is an auxiliary power supply, would be used as power source for control printed circuit boards and relay and cooling fans in a high-power photovoltaic generating system. The proposed multi-output ($24V_{DC}/30A$, $230V_{DC}/5A$) hybrid three-level boost converter, which uses an energy recovery snubber, is controlled by variable-frequency and phase-shifted modulations and can achieve zero-voltage switching with all operating conditions of input voltage and load range. Experimental results of a 2kW prototype are evaluated and implemented to verify the performance of the proposed converter.