• Title/Summary/Keyword: Energy consumption saving

Search Result 813, Processing Time 0.04 seconds

Light Control System For The Saving of Electric Energy (전기에너지 절약을 위한 조명제어시스템)

  • Han, Seung-Ho;Kim, Seong-Cheol;Choi, Kyoung-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.289-292
    • /
    • 2008
  • This paper represents the electric energy saving using light control system. Without Light Control System(LCS), it is very hard to classify the amount of electric energy saving for lighting, since it is determined by the end-user's preference in times. Typical LCS has an fixed algorithm to control each light's intensity by ON/Off Control, Step Control, or Dimming Control. We have studied the electric energy saving effect in a LCS equiped building with natural lighting. The electric power consumption at the peak power consumption time with LCS reduced up to 65% of the non-controled case.

  • PDF

Energy Performance and Improvement in University Library - Concentrated on 'K'University Library located in Seojong City -

  • Roh, Ji Woong
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • The problem of energy consumption is more serious in university buildings than primary, middle and high school buildings. Because university buildings have generally heating and cooling systems, and various incidental facilities. In university, the library is one of the building that many people use and the most energy is spent. So, investigation on energy saving is very important and urgent. This study aims finally to present the guideline for low-energy design of University library by aiding a designer to select best solution in the side of energy-saving. In this paper, composition of space, utilization schedule and performance of construction materials are grasped, some primary factors that effect to energy saving are analyzed by energy simulation. The result of this study is as follows; First, the subject library has more cooling load than heating load because of cooling load generated during middle season. Second, green roofs is the most effective to heating load saving, but not to cooling energy. Third, outdoor air cooling is the most effective to cooling energy saving among the investigated strategies included in this study.

Comparing Performances of Factors for Reducing Energy at Deteriorated Elementary School Buildings (노후 초등학교 건물에너지 절감을 위한 요소기술의 성능 비교)

  • Lhee, Sang-Choon;Choi, Young-Joon;Kim, Hyun-Ki;Choi, Yool
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • Faced with the international issue of environmental problems from global warming and energy consumption, the Korean Government has made many efforts on reducing energy and $CO_2$ emission under the motto of "Low-Carbon Green Growth". In order to reduce energy in the building sector, severe design standards and regulations on saving energy in new buildings have been established. Now, it is necessary to focus on deteriorated buildings where applications of energy saving designs and techniques have been insufficient, for maximizing energy saving in the building sector. Specially, it is very important to reduce energy through the remodeling process at deteriorated school buildings which were built over 20 years ago and sharply changed into the excessive energy consumption structure from new educational curricula. Thus, this paper examined the effects of potential factors to reduce energy at deteriorated elementary school buildings using the energy simulation on the Visual DOE 4.0 program. Among applied factors of insulations, southern louver, window's SHGC, indoor setup temperature, and system efficiency, all factors except window's SHGC turned out contribute to reduce energy at the deteriorated elementary school buildings, compared with the baseline energy performance.

Field Test of Energy Storage System on Urban Transit System (도시철도용 에너지저장시스템 에너지 절감을 현장시험)

  • Lee, Han-Min;Kim, Gil-Dong;An, Cheon-Heon;Kim, Young-Gyu;Kim, Tae-Seok
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1461-1467
    • /
    • 2009
  • The electric railway is a clean and energy saving system, because it requires relatively less energy than automobiles by transporting the same passengers or goods. Six thousands of vehicles are operated on Korean urban transit system. This system is 95% of regeneration system. Especially, the VVVF-Inverter vehicle has a merit of the highest regeneration rate. Energy consumption is 90% for traction and 10% for auxiliary supply. Braking energy is about 40% of energy consumption. Up to 40% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system) stores the energy generated during braking and discharges it again when a vehicle accelerates. This paper presents field tests about the energy saving rate of the developed ESS. when the ESS is on/off, energy saving rate of the ESS is tested. The verification test in the field focused on energy saving.

  • PDF

An Analysis of Attitude and Behavior for Energy-Saving by the Purchase Style (구매행동유형에 따른 에너지절약 태도와 절약행동 분석)

  • Huh, Kyung-Ok
    • Journal of Family Resource Management and Policy Review
    • /
    • v.13 no.3
    • /
    • pp.17-30
    • /
    • 2009
  • This study investigated the relationship between style of purchase behavior and search information, attitude, and behavior for energy saving. In addition, this paper classified several consumer groups based on their different styles of purchase behavior and investigated whether those groups differ in attitude and behavior for energy saving. The following is a summary of the main results. First, consumers were classified according to style of purchase behavior into a rational consumer group, a fashion- or brand-oriented group, a group uninterested in consumption, and a neutrally oriented group. Second, there were no significant differences among the four consumer groups in the amount of information search and the level of communication with other consumers related to energy-saving information; however, there were significant differences in terms of the information sources used. For example, the neutrally oriented group was more likely to use more objective information sources. Third, the level of attitude toward energy saving was more likely to be active when consumers were old and rational. Consumers with a high income, education and experience in energy saving, and an active attitude were more likely to be active in energy saving, especially in the disposal stage of purchase. Finally, attitude toward energy saving was the most influential factor in the level of energy-saving behavior.

  • PDF

A Study on Urban Energy Planning Process and Planning Support System for a Energy Saving Green City (친환경 도시에너지계획 프로세스 및 계획지원기술에 관한 연구)

  • Yeo, In-Ae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.502-505
    • /
    • 2012
  • This study suggested 'Environmental Friendly City Model' and 'Energy Planning Process' according to the increasing necessity of 'Energy Saving Green City and 3 technologies like (1)Urban Spatial Modeling, (2)Urban Energy Consumption, (3)Urban Energy Supply Planning technologies were suggested which are able to support sustainable urban energy planning'. The results are as follows. (1)E-GIS modeling system was suggested as a 'Planning Supporting System'. (2)Urban Energy Consumption Algorithm was systemized with planning information of E-GIS DB. (3)Urban Energy System Location was deduced by integrating E-GIS DB and ANN algorithm.

  • PDF

Development of control and monitoring board for building energy saving valve (빌딩 에너지 절감 밸브용 제어 및 감시 보드 개발)

  • Oh, Jin-Seok;Kang, Young-Min;Jang, Jae-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.895-902
    • /
    • 2018
  • Energy consumption in buildings is close to 40% of the total national energy consumption in developed countries such as US and Japan, and Korea accounts for 24% of total energy consumption. In buildings, HVAC can't freely control the cooling flow rate according to the required calorie, so energy is not used efficiently. Therefore, by using the energy saving valve, the flow rate can be controlled by the required amount of heat and the energy can be saved. In this paper, we define basic conditions and develop control and monitoring boards for building energy saving valves based on PIC processor with low power and high cost-effectiveness. The designed board displays and transmits in real time information about two temperature values, flow values and calculated calories for temperature difference measurement. The developed board will be useful for real - time monitoring of the state of the valve in the future and development of the valve for the offshore.

Performance Evaluation of Electrochromic Window System by Different Orientations and Locations in Korea (Electrochromic 창호 적용시 지역별 건물 냉난방 에너지 소비량 절감성능)

  • Shin, Jae-Yoon;Chae, Young Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.75-84
    • /
    • 2018
  • The most crucial point of reducing building energy is application of high performance envelope. The amount of heat exchange through window is highest in comparison of other envelopes so that heat exchange through window influence directly with building energy consumption. The window energy performance can be define with thermal, leakage and optical performance. In previous study we can confirmed that not only thermal performance but also optical performance are considered, 11% to 15% of building energy consumption can be reduced. Smart window system has potential of energy saving so that many industry field use smart window system including architectural area and these aspect causes smart window market continuous growth year by year. In this study, building energy consumption has been analyzed which consist of smart window that dynamically control optical states. The consideration of standard commercial building model for research, the reference medium size commercial building model of DOE (Department Of Energy, USA) has been used. The building energy simulation result of 4 axis in 8 regions in Korea shows 8% to 22% reduction of building energy consumption by application of smart window system.

Trends in Mobile Network Energy-Saving Technology (모바일 네트워크 에너지 절감 기술 동향)

  • S. Jung;S.-E. Hong;J. Na
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.26-35
    • /
    • 2023
  • Energy efficiency is an important factor toward sustainable future mobile network systems. As the size of the 5G mobile network system increases, the consumption and costs of energy increase. Accordingly, energy-saving optimization has become a major process in network systems, and various related technologies for energy saving are being developed. We provide a brief review of the technical trends in energy saving in 3GPP 5G & 5G Advanced systems and O-RAN systems. We focus on power models and energy-saving technologies in various resource domains of 3GPP 5G & 5G Advanced systems and energy-saving use cases of O-RAN systems.

A Study on Control and Monitoring System for Building Energy Management System

  • Oh, Jin-Seok;Bae, Soo-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.335-340
    • /
    • 2011
  • Building energy saving is one of the most important issues in these days. Control algorithm for energy saving should be designed properly to reduce power consumption in building. Recently, building energy system consists of hybrid energy system coupling with RE (Renewable Energy) source. In this paper, an optimum control algorithm for building energy saving is applied to BEMS (Building Energy Management System) by using an outdoor air temperature prediction strategy. BEMS coupling with renewable energy can control HVAC (Heating, Ventilating and Air-Conditioning) system effectively. In order to verify the effectiveness of building energy saving, BEMS was tested for several months at a laboratorial chamber with an air conditioner, fan and heater. To this end BEMS embedded control algorithm has been tested successfully.