• 제목/요약/키워드: Energy conservation effect

검색결과 173건 처리시간 0.026초

압력 변화 모사를 통한 초소형 연소기에서의 열손실 예측 모텔 개발 (Development of Model for Heat Loss from a Micro Combustor Using Pressure Simulation)

  • 최권형;권세진;이대훈
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.39-45
    • /
    • 2003
  • As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.

Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis

  • Butt, Faaz A.;Jafri, Syed M. Mohsin
    • Advances in nano research
    • /
    • 제3권3호
    • /
    • pp.169-176
    • /
    • 2015
  • Iron nanoparticles were made by using the modified coprecipitation technique. Usually the characteristics of synthesised particles depend upon the process parameters such as the ratio of the iron ions, the pH of the solution, the molar concentration of base used, type of reactants and temperature. A modified coprecipitation method was adopted in this study. A magnetic stirrer was used for mixing and the morphology and nature of particles were observed after synthesis. Nanoparticles were characterised through XRD. Obtained nanoparticles showed the formation of magnetite and maghemite under citric acid and oxalic acid as stabilisers respectively. The size of nanoparticle was greatly affected by the use of different types of stabilisers. Results show that citric acid greatly reduced the obtained particle size. Particle size as small as 13 nm was obtained in this study. The effects of different kinds of nucleating agents were also observed and two different types of nucleating agents were used i.e. potassium hydroxide (KOH) and copper chloride ($CuCl_2$). Results show that the use of nucleating agent in general pushes the growth phase of nanoparticles towards the end of coprecipitation reaction. The particles obtained after addition of nucleating agent were greater in size than particles obtained by not utilising any nucleating agent. These particles have found widespread use in medical sciences, energy conservation and electronic sensing technology.

Numerical Analysis of the Effect of Injection Pressure Variation on Free Spray and Impaction Spray Characteristics

  • Park, Kweon-Ha;Kim, Byung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.236-250
    • /
    • 2000
  • Compression ignition direct injection diesel engines employed a high pressure injection system have been developed as a measure to improve a fuel efficiency and reduce harmful emissions. In order to understand the effects of the pressure variation, many experimental works have been done, however there are many difficulties to get data in engine condition. This work gives numerical results for the high pressure effects on spray characteristics in wide or limited space with near walls. The gas phase is modelled by Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled using the discrete droplet model approach in Lagrangian form and the drop behavior on a wall is calculated with a new droplet-wall interaction model based on the experiments observing individual drops. The droplet distributions, vapour fractions and gas flows are shown in various injection pressure cases. In free spray case which the injection spray has no wall impaction, the spray dispersion and vapour fraction increase and drop sizes decrease with increasing injection pressure. The same phenomena appears more clearly in wall impaction cases.

  • PDF

Some characteristics of an interior explosion within a room without venting

  • Feldgun, V.R.;Karinski, Y.S.;Yankelevsky, D.Z.
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.633-649
    • /
    • 2011
  • The paper presents a study aimed at understanding some characteristics of an interior explosion within a room with limited or no venting. The explosion may occur in ammunition storage or result from a terrorist action or from a warhead that had penetrated into this room. The study includes numerical simulations of the problem and analytical derivations. Different types of analysis (1-D, 2-D and 3-D analysis) were performed for a room with rigid walls and the results were analyzed. For the 3D problem the effect of the charge size and its location within the room was investigated and a new insight regarding the pressure distribution on the interior wall as function of these parameters has been gained. The numerical analyses were carried out using the Eulerian multi-material approach. Further, an approximate analytical formula to predict the residual internal pressure was developed. The formula is based on the conservation law of total energy and its implementation yields very good agreement with the results obtained numerically using the complete statement of the problem for a wide range of explosive weights and room sizes that is expressed through a non-dimensional parameter. This new formula is superior to existing literature recommendations and compares considerably better with the above numerical results.

Spray Combustion Simulation in Transverse Injecting Configurations

  • Yi, Yoon-Yong;Roh, Tae-Seong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.186-191
    • /
    • 2004
  • The reactive flowfield of the transverse injecting combustor has been studied using Euler-Lagrange method in order to develop an efficient solution procedure for the understanding of liquid spray combustion in the transverse injecting combustor which has been widely used in ramjets and turbojet afterburners. The unsteady two-dimensional gas-phase equations have been represented in Eulerian coordinates and the liquid-phase equations have been formulated in Lagrangian coordinates. The gas-phase equations based on the conservation of mass, momentum, and energy have been supplemented by combustion. The vaporization model takes into account the transient effects associated with the droplet heating and the liquid-phase internal circulation. The droplet trajectories have been determined by the integration of the Lagrangian equation in the flow field obtained from the separate calculation without considering the iterative effect between liquid and gas phases. The reported droplet trajectories had been found to deviate from the initial conical path toward the flow direction in the very end of its lifetime when the droplet size had become small due to evaporation. The integration scheme has been based on the TEACH algorithm for gas-phase equation, the second order Runge-Kutta method for liquid-phase equations and the linear interpolation between the two coordinate systems. The calculation results has shown that the characteristics of the droplet penetration and recirculation have been strongly influenced by the interaction between gas and liquid phases in such a way that most of the vaporization process has been confined to the wake region of the injector, thereby improving the flame stabilization properties of the flowfield.

  • PDF

CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구 (An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System)

  • 김태한;심우건;한상구;정종식;김선철
    • 소음진동
    • /
    • 제6권2호
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

조력에너지 개발을 위한 공간데이터 모델링 방안 (A Plan of Spatial Data Modeling for Tidal Power Energy Development)

  • 오정희;최현우;박진순;이광수
    • 한국지리정보학회지
    • /
    • 제14권3호
    • /
    • pp.22-35
    • /
    • 2011
  • 지형적인 영향으로 큰 조차가 발생하여 조력발전에 유리한 입지를 보유하고 있는 인천만을 대상으로 2006년부터 조력에너지 실용화 기술개발을 위한 연구가 지속적으로 추진되고 있다. 이러한 조력에너지 개발을 위해서는 조력발전 시설물의 최적입지를 결정하고 환경영향을 최소화하는 최적의 대안을 도출할 필요가 있다. 이를 효율적으로 수행하기 위해서는 개발과 보전에 관련된 다양한 공간요소를 체계적으로 관리하고 활용할 수 있는 공간정보체계가 필수적이다. 본 연구를 통해 조력에너지 개발을 위한 공간 데이터는 자료 특성에 따라 크게 세 가지 데이터 군으로 정의 가능하였다. 핵심 데이터 군으로는 조석, 조류 뿐 아니라 파랑, 침식, 퇴적 요소와 같은 공간데이터로 정의된다. 또한 지형도, 시설물도, 수심과 같은 기본 데이터 군과 해양생태와 해양환경 등 각종 주제도 성격의 참조 데이터 군으로 정의된다. 본 연구의 주요 목적은 이러한 공간 데이터 구성 요소의 정의를 통해 필수적 데이터모델과 선택적 데이터모델로 분류한 개념적 공간데이터 모델링 방법론을 정립하고자 함이다.

연안역 개발에 따른 해안과정의 변화 (The Change of Nearshore Processes due to the Development of Coastal Zone)

  • 이중우;이상진;이호;정대득
    • 한국항만학회지
    • /
    • 제13권1호
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

감마선 조사에 의한 목재성질 변화에 관한 연구 (Study of the Changes in Wood Properties by Gamma Irradiation)

  • 윤민철;박병수;김익주;최종일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권4호
    • /
    • pp.229-236
    • /
    • 2012
  • 본 연구는 감마선 조사가 소나무(Pinus densiflrora), 느티나무(Zelkovas serrenata), 오동나무(Paulownia tomentosa)의 세포벽 열화, 셀룰로오스 결정화도, 휨 강도에 미치는 영향을 구명하기 위해 수행되었다. 각 목재 시편들을 100 kGy 선량의 감마선 조사 후 주사전자현미경(scanning electron microscope; SEM) 관찰 결과, 목재 세포벽 열화는 관찰되지 않았으며 휨 강도 역시 현저한 변화가 나타나지 않았다. 감마선 조사에 의한 셀룰로오스 결정화도 역시 유의한 변화가 관찰되지 않았다. 이러한 감마선에 대한 목재의 높은 안전성은 감마선 조사 기술을 재질손상 없이 목재를 가해 중인 균류와 충류 구제를 위해 적용할 수 있음을 의미한다.

진열장 조명의 이론적 기준과 시설에 대한 고찰 (An Approach to the Theoretical Design Standard and Effective Practice of Museum Showcase Lighting)

  • 김홍범
    • 보존과학연구
    • /
    • 통권17호
    • /
    • pp.123-160
    • /
    • 1996
  • There have been many studies and experiments regarding exhibition lighting. Many experiments on photochemical damaging effect and visibility resulted in a practice limited to assigning light levels and adjusting annual exposure time. The three damaging factors to the artifacts are intrinsicsusceptibility to absorb radiant energy, spectral distribution of light source and intensity of illumination and time of exposure. Dividing all the artfacts into three categories to suggest a recommended illuminance level causes some problems. Blue wool, for example, used as the reference material for susceptibility, is not a standard material representing museum artifacts. In the most light sensitive category, ISO class I or anything below have been excluded. The exposure time of one soure can be three times more than another sourece. The spectral distribution of the light source and the relative spectral responsibility of the artifact are not considered in the practice. So in case of very light sensitive material, the recommended illuminance is only the referring value and it is indispensable to check the characteristic of susceptibility of each artifacts. Daylighting is prevailing method to solve the psychological need of the visitors. However, it sould transparent, and should not diffused, and the green-house effect must be considered. llluminance uniformity should based on the maximum illuminance to handle the limitation of exposure for the conservation of a large sensitive object such as a painting. Damage index is not absolute reference for selecting the lighting source because it is experimented from the paper of low grade then calculated. Visibility should be increased by reducing the visual noiseand by planning of appropriate luminance contrast. This paper reviews the problems with the previous studies and experiment sand the current exhibition lighting design practice. The plan for museum showcase lighting is to check the susceptibility and to raise the visibility simultaneously.

  • PDF