• Title/Summary/Keyword: Energy change ratio

Search Result 720, Processing Time 0.032 seconds

An Experimental Study to Estimate the Energy Change by Side Weir (횡월류위어에 의한 에너지변화 평가를 위한 실험연구)

  • Cho, Hong Je;Yoon, Yeong Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.57-62
    • /
    • 2011
  • The river disaster caused by installation of hydraulic structures on the river gives varieties to flowing water stream, tractive force and so on. In this study, the changes of tractive force and energy from the side weir installation for the purpose of flood control was analyzed through laboratory experiment. The experiments of the pre and after-installation have been performed under conditions that waterway is trapezoidal shape, waterway slope ranges are from 0.1 to 1.0 percentage, and flow rates are 25 l/sec. As results, the specific energy ratio increases in the higher slope and at a certain point, larger specific energy ratio showed than 1 in the 1.0% slope. The tractive force ratio decreases in higher slope and the sections that tractive force ratio appeared higher than 1 are more widespread in the direction of downstream. And calculated tractive force is about 1.3.

SHRINKAGE OF VITREOUS BODY CAUSED BY HYDROXYL RADICAL

  • Park, Myoung-Joo;Shimada, Takashi;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • In this study, we examined the effect of hydroxyl radical generated by $\gamma$-ray and UV irradiation on shrinkage of vitreous body. Change in gel ratio of vitreous body and change in the properties of its components (collagen, sodium hyaluronate) were analyzed. By comparing these results, the amount of hydroxyl radical, which induces the considerable shrinkage of vitreous body, was evaluated from theoretical calculation based on experimental condition and some reported kinetic parameters. It was concluded that the integrated amount of hydroxyl radical required to liquefy half of the vitreous body (Vitreous body gel ratio = 50%) was estimated as $140\;{\mu}molg^{-1}$ from $\gamma$-ray irradiation experiment. Also, from UV irradiation experiment result, it was confirmed that the effect of hydroxyl radical is larger than that of other reactive species. The causes of shrinkage of vitreous body are supposed as follows, 1) decrease in viscosity by cleavage of glycoside bond in sodium hyaluronate, 2) leaching of collagen from vitreous body and 3) leaching of crosslinked products and scission products of collagen.

Emission Characteristics of HCNG Engine with Compression Ratio Change (압축비 변화에 따른 HCNG 엔진의 배기 특성)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.106-112
    • /
    • 2013
  • Compression ratio is an important factor affecting engine performance and emission characteristics since thermal efficiency of spark ignition engine can be theoretically improved by increasing compression ratio. In order to evaluate the effect of compression ratio change in HCNG engine, natural gas engine was employed using HCNG30 (CNG 70 vol%, hydrogen 30 vol%). Combustion and emission characteristics of CNG and HCNG fuel was analyzed with respect to the change of compression ratio at each operating condition. The results showed that thermal efficiency improved and $CH_4$, $CO_2$ emission decreased with the increase in compression ratio while $NO_x$ emissions were decreased at a certain excess air ratio condition. Higher thermal efficiency and further reduction of exhaust emissions can be achieved by the increase of compression ratio and the retard of spark timing.

Economic Analysis of Rural Green-Village Planning with Solar Energy considering Climate Change (기후변화를 고려한 농촌지역 그린빌리지의 태양에너지 활용에 관한 경제성 분석)

  • Kim, Dae-Sik;Wang, Young-Doo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.3
    • /
    • pp.25-36
    • /
    • 2013
  • This study aims to perform the economic analysis to the use of solar power facilities in rural villages considering the climate change scenario. IPCC climate change scenarios in the recently adopted the RCP scenarios (RCP8.5, RCP6.5, RCP4.5, RCP2.6) was used. By RCP scenarios, solar radiation, depending on the scenario in 2100, respectively, 3.6%, 2.5%, 1.9%, 1.1% was assumed to increase. From the economic analysis(payback period is 25 year) on 8 points of each province, in all cases of normal data and four RCP scenarios, at all points analyzed were NPV indicate a negative, BC ratio less than 1.0, respectively. In the case of Mokpo, Chunnam RCP8.5, BC ratio were found to be up to a 0.92, followed by 0.89 in the case of RCP8.5 in Jinju, Kyungnam shows, while the minimum was in Jeju. BC ratio is 1.0 or bigger, in order for the normal solar radiation data in Mokpo, Chonnam was the minimum that it takes 37 years. Similarly, in the case of RCP scenarios, 30 years in Mokpo, Chonnam RCP8.5 and 31 years in the cases of Jinju, Kyungnam and Jeonju, Cheonbuk RCP8.5 were analyzed. It was analyzed that RCP8.5 has the highest value. BC analysis models for each of the factors, the results of the sensitivity analysis, the initial installation costs, electricity sales price, discount rate in the order of economy showed higher sensitivity, and the rest factors showed lower changes. Although there are some differences of solar radiation by region, but in Korea most facilities in rural areas, the use of solar power was considered to be economical enough, considering change of several factors with high sensitivity, such as increasing of government subsidies for the solar power installation of the facility, rising oil prices due to a rise in electricity sales price, and a change in discount rate. In particular, when considering climate change scenarios, the use of solar energy for rural areas of the judgment that there was more economical.

Investigation of Ge2Sb2Te5 Etching Damage by Halogen Plasmas (할로겐 플라즈마에 의한 Ge2Sb2Te5 식각 데미지 연구)

  • Jang, Yun Chang;Yoo, Chan Young;Ryu, Sangwon;Kwon, Ji Won;Kim, Gon Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2019
  • Effect of Ge2Sb2Te5 (GST) chalcogen composition on plasma induced damage was investigated by using Ar ions and F radicals. Experiments were carried out with three different modes; the physical etching, the chemical etching, and the ion-enhanced chemical etching mode. For the physical etching by Ar ions, the sputtering yield was obtained according to ion bombarding energy and there was no change in GST composition ratio. In the plasma mode, the lowest etch rate was measured at the same applied power and there was also no plasma induced damage. In the ion-enhanced chemical etching conditions irradiated with high energy ions and F halogen radicals, the GST composition ratio was changed according to the density of F radicals, resulting in higher roughness of the etched surface. The change of GST composition ratio in halogen plasma is caused by the volatility difference of GST-halogen compounds with high energy ions over than the activation energy of surface reactions.

Effect of Grain Boundary Energy on the Shrinkage Rate of Solid State Sintering (고상소결중의 수축률 변화에 미치는 입계에너지의 영향)

  • 윤한호;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • The shrinkage rate of solid state sintering has been theoretically derived by combining the rate equation of material transport and the net free energy change resulting from the decrease of solid-vapor interface and the increase of grain boundary during sintering. For a sinteing model an idealized situation of the spherical particles with BCC packing was taken as the initial condition and the shrinkage was assumed to occur by forming the flat circualr grain boundaries on each particle. The plotted shrinkage rates as a function of grain boundary to surface energy ratio $(gamma_g/gamma_s)$ have shown that the relative density increases linearly at the initial stage of sintering but the shrinkage rate is decreased upon further sintering due to a decrease in driving force for densificaton. It has been also shown that the densification is critically affected by the $gamma_g/gamma_s$ ratio. In order to get the complete densificatin the ratio should be less than $sqrt{3}$. Any additive or atmospheric condition causing the decrease of$_g/gamma_s$ ratio will enhance sintering.

  • PDF

Wind Turbine Performance for Eigen Value Change of Closed-Loop System for PI-Controller (피치제어기 폐루프 시스템의 고유치 변화에 따른 풍력발전기의 성능)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Cheol
    • Journal of Wind Energy
    • /
    • v.4 no.2
    • /
    • pp.17-24
    • /
    • 2013
  • Idealized PID-controlled rotor-speed error for blade pitch control of wind turbines responds as a second-order system with natural frequency and damping ratio for closed-loop system. RISO National Laboratory has recommended specific natural frequency(=0.6 rad/s) and damping ratio(=0.7) for 2 MW wind turbine. The baseline controller for 5 MW wind turbine of NREL(National Renewable Energy Laboratory) is designed based on the same values of RISO recommendation. This study investigates the effect of the natural frequency and damping ratio of the controller for NREL 5 MW wind turbine. It is confirmed that RISO recommendation shall be tuned for each wind turbine.

Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle (전륜구동 전기자동차의 기어비 변경에 따른 구동 특징 민감도 분석)

  • Son, Young-Kap;Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.50-55
    • /
    • 2022
  • Acceleration performance, maximum velocity, urban driving energy consumption, and high-way driving energy consumption are important characteristics of electric vehicle driving. This study analyzes the effect of a gear ratio on these characteristics for a front wheel drive electric vehicle. The normalized sensitivity metric is used to compare the sensitivity of these scaled characteristics to the changes in the gear ratio. The sensitivity analysis results show that the normalized values are 0.95 for maximum velocity, 0.91 for acceleration performance, 0.51 for urban driving energy consumption, and 0.24 for high-way driving energy consumption. Therefore, the maximum velocity was affected the most by the changes in the gear ratio. These results can be used to determine the gear ratio of a front wheel drive electric vehicle to optimize the driving characteristics simultaneously.

Heat Transfer in Heat Storage System with P.C.M. - Inward Melting in a Vertical Tube (상변화 물질을 사용한 축열조에서의 열전달 - 수직원관에서의 내향용융 실험 -)

  • Shon, H.S.;Hwang, T.I.;Lee, C.M.;Choi, G.G.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 1989
  • In the present investigation, experiments on the melting of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin which is measured melting temperature of $42.5^{\circ}C$, latent heat of 37.5 cal/g, heat conductivity of $0.1505W/m^{\circ}C$. Experiments were performed both in the no-subcooling which is initiating it at melting temperature of phase change material, and in the subcooling which means to initiate it under melting temperature of phase change material, in order to compare and investigate the horizontal temperature history, vertical temperature history, ratio of melting and melted mass, figure of the melting front in the vertical tube. In the experimental results, heat transfer from tube wall to phase change material were due to conduction at early stage and due to natural convection with the passage of time, and then occurred melting downward from surface by volumetric expansion. Natural convection affects temperature distribution in the tube, ratio of melting and melted mass, figure of the melting front and then progress rapidly in case of nosubcooling compared to subcooling.

  • PDF

A promising form-stable phase change material prepared using cost effective Jute stick Biochar as the matrix of stearic acid for thermal energy storage (황마 바이오차를 사용한 에너지 저장용 상변화 물질의 제조 및 성능평가에 관한 연구)

  • Adnin, Raihana Jannat;Mandal, Soumen;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.169-170
    • /
    • 2022
  • Due to the higher use of nonrenewable fossil fuel energy, environment friendly sustainable energy from waste materials is attracting attention of the researchers. Considering that, jute stick (JS) biochar has been considered for this study for ecofriendly and sustainable thermal energy storage application. Waste jute sticks (JS), which are being mainly used as a fuel for cooking purpose, have been pyrolyzed to produce porous biochar and have been used for shape stabilization of stearic acid (SA) as phase change material (PCM). SA at 1:1 ratio has been incorporated into the activated JS biochar to concoct shape-stabilized phase change composite (SAJS). The SAJS has been evaluated by different techniques such as Fourier transform-infrared spectroscope (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The obtained composite PCM has shown excellent shape stability with a high latent heat storage, suggesting its suitability for thermal energy storage applications.

  • PDF