• 제목/요약/키워드: Energy band structure

검색결과 531건 처리시간 0.027초

$^1$Highly-crystalline $sp^3$-bonded 5H-BN prepared by plasma-packets assisted pulsed-laser deposition: a room-temperature UV light-emitter at 225nm

  • Komatsu, Shojiro
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.6-6
    • /
    • 2003
  • Highly crystalline 5H-polytypic form of sp3-bonded boron nitride (BN) was grown by pulsed-laser-vaporization of BN, where synchronous reactive-plasma packets assisted the crystal growth in the vapor phase. The structure of the product crystallites (˙5 micrometers) was confirmed by using transmission electron diffraction and electron energy loss spectroscopy. This material proved to have a sharp and dominant band at 225 nm by cathode luminescence at room temperatures and corresponding monochromatic images revealed that they uniformly emitted the ultraviolet light. Considering that cubic BN has already been doped as p- and n- type semiconductors, this material may be applied to the light-emitting devices working at almost the deepest limit of the UV region that is functional without vacuum.

  • PDF

AlGaAs/GaAs/AlGaAs 이중 이종집합 HEMT 구조에서의 2차원 전자개스 농도의 양자역학적 계산 (Quantum Mechanical Calculation of Two-Dimensional Electron Gas Density in AlGaAs/GaAs/AlGaAs Double-Heterojunction HEMT Structures)

  • 윤경식;이정일;강광남
    • 전자공학회논문지A
    • /
    • 제29A권3호
    • /
    • pp.59-65
    • /
    • 1992
  • In this paper, the Numerov method is applied to solve the Schroedinger equation for $Al_{0.3}Ga_{0.7}AS/GaAs/Al_{0.3}Ga_{0.7}As$ double-heterojunction HEMT structures. The 3 subband energy levels, corresponding wave functions, 2-dimensional electron gas density, and conduction band edge profile are calculated from a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. In addition, 2-dimensional electron gas densities in a quantum well of double heterostructure are calculated as a function of applied gate voltage. The density in the double heterojunction quantum well is increased to about more than 90%, however, the transconductance of the double heterostructure HEMT is not improved compared to that of the single heterostructure HEMT. Thus, double-heterojunction structures are expected to be suitable to increase the current capability in a HEMT device or a power HEMT structure.

  • PDF

Carbon Nanotube Gate-Elongated Tunneling Field Transistor(CNT G-E TFET) to Reduce Off-Current

  • 허재;전승배
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.240-242
    • /
    • 2013
  • In this paper, novel Carbon Nanotube Gate-Elongated Tunneling Field Transistor(CNT G-E TFET) is proposed. This proposed device is designed to decrease off-current around 2~6 orders of magnitude compared to the gate-channel size matched TFET. Mechanism of CNT G-E TFET creates additional steps in energy band structure so that off-current can be reduced. Since CNT TFETs show a great probability for tunneling processes and they are beneficial for the overall device performance in terms of switching speed and power consumption, CNT G-E TFET looks pretty much promising.

  • PDF

전자빔 다이오드 구조개선에 의한 대전력 후진파발진기의 구현 (Implementation of a High Power Backward Wave Oscillator on Electron Beam Diode Structure Improvement)

  • 김원섭
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.897-903
    • /
    • 2009
  • We have designed the backward wave oscillator. A power-pulsed generator oscillated at 24 GHz has higher frequency than current one. It is very inportant to prevent microwave from going into the beam diode, since intence microwave will harmfully affect beam generation. Due to the axial mode operation, there exist a critial value of beam energy for the oscillation. By changing the condition at the SWS end, an enhanced performance of the K-band oversized BWO is observed in a low magnetic field region about 0.8T.

Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes

  • Jeong, Byoung-Seong
    • 공업화학
    • /
    • 제32권2호
    • /
    • pp.214-218
    • /
    • 2021
  • We investigated the optimal stacked structure from the perspective of process architecture (PA) through emission spectrum analysis according to the wavelength of quantum dot (QD)-organic light-emitting diodes (OLED). We confirmed that the blue-light leakage through the QD can be minimized by increasing the QD filling density above a critical value in the red QD (R-QD) layer. In addition, when the thickness of red-color filter (R-CF) at the upper part of the R-QD increased to more than 3 ㎛, the leakage of blue light through the R-CF was effectively blocked, and a very sharp emission spectrum in the red wavelength band could be obtained. According to these outstanding results, we expect that the development of QD-OLED displays with very excellent color gamut can be possibly realized.

ITO/Ag/ITO 투명전도막의 전기적 특성 (Electrical Properties of ITO/Ag/ITO Conducting Transparent Thin Films)

  • 채홍철;백창현;홍주화
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.192-196
    • /
    • 2011
  • The multi-layered thin film with an ITO/Ag/ITO structure was produced on PET by using magnetron reactive sputtering method. First, 30 nm of ITO thin film was coated on PET by using normal temperature process. Then 20-52 nm of the Ag thin film was coated. Lastly, 30 nm of ITO thin film was coated on Ag layer. The sample of the 20 nm Ag thin film showed more than 70% transmission and a $2.7{\Omega}/{\Box}$ sheet resistance. When compared to the existing single-layered transparent conducting thin film, multi-layered film was found to be superior with about $5{\Omega}/{\Box}$ less sheet resistance. However, since the Ag layer became thinner, the band gap energy needs to be increased to more than 3.5 eV.

부유대역법을 이용한 단결정Ga2O3의 광학적 특성 (Optical Properties of Ga2O3 Single Crystal by Floating Zone Method)

  • 김진기;김종수;김광철
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.78-82
    • /
    • 2021
  • The Ga2O3 single crystal was grown through a floating zone method, and its structural and optical properties were instigated. It has a monoclinic crystal structure with a (100) crystal orientation and an optical band gap energy of 4.6 eV. It showed an average transmittance of 70% in the visible region. At room temperature, its photoluminescent spectrum showed three different peaks: the ultraviolet at 360 nm, the blue-green at 500 nm, and the red peaks at 700 nm. Especially, at liquid nitrogen temperature, the ultraviolet peak was optically active while the others were quenched.

무선 에너지 전송을 위한 정류회로에 관한 연구 (Study on the Rectifier Circuits for Wireless Energy Transmission)

  • 신두섭;서철헌
    • 대한전자공학회논문지TC
    • /
    • 제48권2호
    • /
    • pp.90-94
    • /
    • 2011
  • 본 논문에서는 고주파 대역 중에서 에너지 전송과 관련되어 정류 회로의 구조와 특성을 분석하고, 최대의 효율을 이끌어 낼 수 있는 방안을 찾고자 한다. 13.56MHz에서의 입력 신호를 DC 변환하여 실험 및 측정을 하였다. 정류회로는 반파 정류회로, 전파정류회로 브릿지 정류회로로 나눌 수 있고, 최대 효율을 갖기 위해서 다양한 정류 회로를 전산 모의 실험하였다. 현재까지의 연구 내용은 passive 소자를 이용한 효율 개선에 중점을 두고 실험을 하였다. 정류 효율에 영향을 미치는 요소는 소자의 특성에 좌우하며, 이번 실험에서는 약 70%의 효율을 측정할 수 있었으며, 보다 개선된 소자를 사용함으로서 낮은 입력에서 높은 효율을 얻을 수 있었다.

의료 WBAN 환경을 위한 IEEE 802.15.4 MAC 성능 개선 (Performance Improvement of IEEE 802.15.4 MAC For WBAN Environments in Medical)

  • 이정재;홍재희
    • 한국전자통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.103-110
    • /
    • 2015
  • WBAN(Wireless Body Area Network)는 인체주변 2-3m 영역에서 의료 및 비의료 디바이스들로 구성된 다양한 환자 모니터링 분야를 지원하기 위한 무선센서네트워크이다. WBAN 환경을 위해서는 저전력 소비, QoS, 듀티사이클등의 요구사항을 만족하고 주파수 대역을 효율적으로 분배하며 트래픽 로드에 강하면서 에너지를 절약하는 MAC(Medium Access Control)이 설계되어야 한다. 본 논문에서는 트래픽 로드가 증가할 때를 고려해 에너지에 효율적인 AQ(Adaptive Queuing) MAC 슈퍼프레임 구조를 제안한다. 또한 시뮬레이션 결과 제안하는 AQ(Adaptive Quenuing)MAC를 IEEE 802.15.4 MAC과 비교 하였을 때 전송처리율, 평균MAC 지연율 측면에서 향상된 결과를 얻을 수 있었다.

nBn Based InAs/GaSb Type II Superlattice Detectors with an N-type Barrier Doping for the Infrared Detection

  • 김하술;이훈;황제환;이상준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.128.2-128.2
    • /
    • 2014
  • Long-wave infrared detectors using the type-II InAs/GaSb strained superlattice (T2SL) material system with the nBn structure were designed and fabricated. The band gap energy of the T2SL material was calculated as a function of the thickness of the InAs and GaSb layers by the Kronig-Penney model. Growth of the barrier material (Al0.2Ga0.8Sb) incorporated Te doping to reduce the dark current. The full width at half maximum (FWHM) of the 1st satellite superlattice peak from the X-ray diffraction was around 45 arc sec. The cutoff wavelength of the fabricated device was ${\sim}10.2{\mu}m$ (0.12eV) at 80 K while under an applied bias of -1.4V. The measured activation energy of the device was ~0.128 eV. The dark current density was shown to be $1.2{\times}10^{-5}A/cm^2$ at 80 K and with a bias -1.4 V. The responsivity was 1.9 A/W at $7.5{\mu}m$ at 80K and with a bias of -1.9V.

  • PDF