• Title/Summary/Keyword: Energy absorbing capacity

Search Result 84, Processing Time 0.025 seconds

A STUDY ON EXPERIMENTAL CHARACTERISTICS OF ENERGY ABSORPT10N CONTROL IN THIN-WALLED TUBES FOR THE USE OF VEHICULAR- STRUCTURE MEMBERS

  • Kim, S.-K.;Im, K.-H.;Hwang, C.-S.;Yang, I.-Y.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.137-145
    • /
    • 2002
  • Automobiles should be designed to meet the requirements and standards for the protections of passengers in a car accident. One of safety factors is an absorbing capacity in collision. Many vehicles have been designed based on the criterion of the absorbing capacity. Therefore a controller has been developed in order to control and increase the absorbing capacity of impact energy in automobile collision. The capacity of impact energy will be improved regardless of vehicular-structure members and shapes. An air-pressure horizontal impact tester for crushing has been built up for the evaluation of energy absorbing characteristics in collision. Influence of height, thickness and clearance in the controller have been considered to predict and control the energy absorbing capacity. Aluminum alloy (Al) tubes (30,39,44 m in inner dia. and 0.8, 1.0, 1.2 m in thickness) are tested by axial loading. The energy absorbing capacity of Al tubes have been estimated in cases of with-controller and without-controller. respectively based on height. thickness, clearance of an controller.

Energy Absorbing Capacity for New Rockfall Protection Fence (신개념 낙석방지울타리의 낙석 지지능력 평가)

  • 문영종;정형조;박기준;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.293-298
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ, But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations. In the result it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

Characteristics and Energy Absorbing Capacity for New Rockfall Protection Fence (신개념 낙석방지울타리의 특성 및 성능평가)

  • 문영종;정형조;박기준;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.461-466
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ. But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations In the result, it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

A Study on Rockfall Energy and Rockfall Protection Fence Applications on the Slope (사면에서 발생하는 낙석에너지와 낙석방지울타리 적용성에 관한 연구)

  • 김남호;신윤섭;박윤재;조종석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.523-530
    • /
    • 2002
  • Recently, while rockfall occurs very frequently, a lot of researches on the rockfall protection fence Is in process. But the rockfall protection fence has been installed unrelated to slope characteristics, rockfall shape and rockfall height. Therefore, in this study we suggested the effective protection fence model considering about rockfall energy and energy absorbing capacity and we verified the model by field test. According to these results, it is more reasonable to evaluate rockfall energy based on the results of simulation program, which can be consider effects of energy decrease, than use the simplified method proposed by Japanese road association. And rockfall energy is affected by the size of supports and wire rope and the space of supports. As the results of comparing rockfall energy with energy absorbing capacity, type$\circled1$(the space of supports is changed to 3.0m)can be available for generally expected rockfall except the rock slope over 30m heights. But rockfall protection fence installed at the field, it should be partially reinforced after consideration of slope particularities and construction conditions.

  • PDF

Development and Performance Evaluation of the Expanded Metal Rockfall Protection Fence

  • Hwang, Young-Cheol;Kim, Bum-Joo;Noh, Heung-Jae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.35-45
    • /
    • 2005
  • The rockfall protection fence is one of the most common rockfall protection methods in Korea. The typical rockfall protection fence consists mainly of three parts ; H-beam supports, wire meshes, and wire ropes. The design of the rockfall protection fence is made such that the total energy absorbing capacity of the fence. Therefore, resulting from the combined energy absorbing capacity of the three parts is larger than the falling energy of rocks. In present study, a new rockfall protection fence, constructed using expanded metals instead of the existing wire rope and wire mesh for the typical type of rockfall protection fence, was evaluated on its performance by conducting both laboratory and field tests. Also, for a comparison, the same tests were performed on the typical rockfall protection fence. The test results revealed that the expanded material is an economic alternative to the existing protection materials and the expanded metal rockfall protection fence exhibits the higher energy absorbing capacity compared to that of the typical rockfall protection fence.

  • PDF

Estimation of Plastic Energy Dissipation Amount of Multi-bent Spatial structure by Equivalent Linear Analysis

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.131-136
    • /
    • 2006
  • It is important to evaluate energy absorption capacity of frames required during a design earthquake. An inelastic computer analysis based on mathematical modelling of energy absorbing frames and elements makes it possible to evaluate required energy absorption capacity. But such an analysis sometimes consumes much computation time particularly in case of complicated structural system. This paper presents a proposal to predict energy absorption of multi-bent steel frames by simple equivalent linear method.

  • PDF

Energy Absorbing Control Characteristic of Al Thin-walled Tubes (AL 박육부재의 에너지 흡수 제어특성)

  • Yang, Yong-Jun;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • The structural members must be designed to control characteristics of energy absorption for protecting passengers in a car accident. Study on collapse characteristics of structural member is currently conducted in parallel with other studies on effective energy absorption capacity of structural members with diverse cross-sectional shapes and various materials. This study concerns the crashworthiness of the widely used vehicle structural members, square thin-walled tubes, which are excellent in the point of the energy absorption capacity. The absorbed energy, mean collapse load and deformation mode were analyzed for side member which absorbs most of the collision energy. To predict and control the energy absorption, controller is designed in consideration of its influence on height, thickness and width ration in this study. The absorbed energy and mean collapse load of square tubes were increased by $15{\sim}20%$ in using the controller, and energy absorbing capability of the specimen was slightly changed by change of the high controller's height.

The Collapse Characteristics of Vehicle Thin-walled Members Coated Damping Material (댐핑재가 도포된 차체 박육부재의 압궤특성)

  • 송상기;박상규;송찬일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.76-81
    • /
    • 2003
  • The purpose of this study is to analyze the collapse characteristics of widely used spot welded section members coated damping material Y1000 and to develop an analysis method for acquiring exact collapse loads and energy absorption ratio. Hat-shaped thin-walled members have the biggest energy absorbing capacity in a front-end collision. The sections were tested on quasi-static and impact loads. Specimens with two type thickness, width ratio and spot weld pitch on the flange have been tested in impact velocities(6.73n0sec and 7.54n1sec) which imitate a real-life car collision. As a result, it was developed the system for acquiring impact energy absorbing characteristics of structure united thin-walled member and damping materials.

Analysis on the Crashworthiness of the Full Rake Korean Electric Multiple Unit Train (한국형 표준전동차 전체차량의 충돌안전도 해석 연구)

  • 구정서;김동성;조현직;권태수;최성규
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • In this paper, numerically evaluated is the crashworthiness of the new design of the standard Korea Electric Multiple Unit Train(K-EMU)[developed by the Korea Railway Research Institute]. The 4-car consist of K-EMU is analyzed under collision conditions such as normal coupling, heavy shunting, light collision and heavy collision to collide against another stationary one at 5 kph, 10 kph, 25 kph and 32 kph, respectively. Energy absorbing capacity of its draftgear commercially available in the market and to be equipped in K-EMU is evaluated under each collision condition. Analytical results show that draftgear only is not enough to provide necessary energy absorbing capacity. It is therefore concluded that additional energy absorbers like mechanical fuses should be adopted to improve the crashworthiness of K-EMU.

  • PDF

Seismic study of buildings with viscoelastic dampers

  • Pong, W.S.;Tsai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.569-581
    • /
    • 1995
  • In this paper, the seismic behavior of a 10-story building equipped with viscoelastic dampers is analyzed. The effects of ambient temperature, the thickness, the total area, and the position of the viscoelastic dampers are studied. Results indicate that the energy-absorbing capacity of viscoelastic damper decreases with increasing the ambient temperature. The thickness and the total area of viscoelastic dampers also affect the seismic mitigation capacity. The thickness cannot be too small, which is not effective in vibration reduction, nor can it be too large, which not only increases the cost but also reduces the seismic resistance. The total area of viscoelastic dampers should be determined properly for optimum damper performance at the most economical design. The mounting position of viscoelastic dampers also influences the structure's seismic performance. Numerical results show that, if properly equipped, the VE dampers can reduce the structural response both floor displacement and story shear force and increase the overall level of damping in structures during earthquakes.