• Title/Summary/Keyword: Energy Validation

Search Result 653, Processing Time 0.026 seconds

Prediction of the Digestibility and Energy Value of Corn Silage by Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 옥수수 사일리지의 소화율 및 에너지 평가)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Kim Su-Gon;Ha Jong-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • This study was carried out to explore the accuracy of Near Infrared Reflectance Spectroscopy (NIRS) fer the prediction of digestibility and energy value of corn silages. The spectral data were regressed against a range of digestibility and energy parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with first and second order derivatization, with scatter correction procedure(SNV-Detrend) to reduce the effect of extraneous noise. Calibration models for NIRS measurements gave multivariate correlation coefficients of determination$(R^2)$ and standard errors of cross validation of 0.92(SECV 1.73), 0.91(SECV 1.13) and 0.93(SECV 1.74) for in vitro dry matter digestibility(IVDMD), in vitro true digestibility(IVTD), and cellulase dry matter digestibility(CDMD), respectively. The standard error of prediction(SEP) and the multiple correlation coefficient of validation$(R^2v)$ on the validation set(n=39) was used in comparing the prediction accuracy. The SEP value was 0.30(TDN), 0.01(NEL), and 0.01(ME). The relative ability of NIRS to predict digestibility and energy value was very good for CDMD, total digestible nutrients(TDN), net energy fer lactation(NEL) and metabolizable energy(ME). This paper shows the potential of NIRS to predict the digestibility and energy value of con silage as a routine method in feeding programmes and for giving advice to farmers.

On the Spectral Eddy Viscosity in Isotropic Turbulence

  • Park Noma;Yoo Jung Yu;Choi Haecheon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.105-106
    • /
    • 2003
  • The spectral eddy viscosity model is investigated through the large eddy simulation of the decaying and forced isotropic turbulence. It is shown that the widely accepted 'plateau and cusp' model overpredicts resolved kinetic energy due to the amplification of energy at intermediate wavenumbers. Whereas, the simple plateau model reproduces a correct energy spectrum. This result overshadows a priori tests based on the filtered DNS or experimental data. An alternative method for the validation of subgrid-scale model is discussed.

  • PDF

Iodine Quantification on Spectral Detector-Based Dual-Energy CT Enterography: Correlation with Crohn's Disease Activity Index and External Validation

  • Kim, Yeon Soo;Kim, Se Hyung;Ryu, Hwa Sung;Han, Joon Koo
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1077-1088
    • /
    • 2018
  • Objective: To correlate CT parameters on detector-based dual-energy CT enterography (DECTE) with Crohn's disease activity index (CDAI) and externally validate quantitative CT parameters. Materials and Methods: Thirty-nine patients with CD were retrospectively enrolled. Two radiologists reviewed DECTE images by consensus for qualitative and quantitative CT features. CT attenuation and iodine concentration for the diseased bowel were also measured. Univariate statistical tests were used to evaluate whether there was a significant difference in CTE features between remission and active groups, on the basis of the CDAI score. Pearson's correlation test and multiple linear regression analyses were used to assess the correlation between quantitative CT parameters and CDAI. For external validation, an additional 33 consecutive patients were recruited. The correlation and concordance rate were calculated between real and estimated CDAI. Results: There were significant differences between remission and active groups in the bowel enhancement pattern, subjective degree of enhancement, mesenteric fat infiltration, comb sign, and obstruction (p < 0.05). Significant correlations were found between CDAI and quantitative CT parameters, including number of lesions (correlation coefficient, r = 0.573), bowel wall thickness (r = 0.477), iodine concentration (r = 0.744), and relative degree of enhancement (r = 0.541; p < 0.05). Iodine concentration remained the sole independent variable associated with CDAI in multivariate analysis (p = 0.001). The linear regression equation for CDAI (y) and iodine concentration (x) was y = 53.549x + 55.111. For validation patients, a significant correlation (r = 0.925; p < 0.001) and high concordance rate (87.9%, 29/33) were observed between real and estimated CDAIs. Conclusion: Iodine concentration, measured on detector-based DECTE, represents a convenient and reproducible biomarker to monitor disease activity in CD.

An Optimal Operation Model of A Centralized Micro-Energy Network (마이크로 에너지 네트워크의 중앙집중형 최적 운영 모델)

  • Lee, Ji-Hye;Kim, Hak-Man;Im, Young Hoon;Lee, Jae Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1451-1457
    • /
    • 2013
  • Recently, new concept of energy systems such as microgrid, smart grid, supergrid, and energy network has been introducing. In this paper, the concept of the centralized micro-energy network, which is an energy community of a building group without district heating system, is introduced. In addition, a mathematical model for optimal operation of the micro-energy network as a main function of an energy management system (EMS) for the micro-energy network is proposed. In order to show the validation, the proposed model is tested through the simulation and analyzed.

Validation of Floating LiDAR System for Development of Offshore Wind Farms (해상풍력단지 개발을 위한 부유식 라이다 검증)

  • Lee, Jin-Jae;Kang, Seung-Jin;Lee, Gwang-Se;Kim, Hong-Woo;Kim, Sung-One;Ahn, You-Ock;Kyong, Nam-Ho
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2020
  • In this study, a floating LiDAR system (FLS) is investigated through a field test involving two steps. First, correlations among wind speeds, measured using the met mast and two LiDARs, are computed to analyze the acceptance criteria of LiDAR for measuring wind speed. The results of the analysis show that the slopes of single variant regression between mean wind speeds are below 1.03 and the coefficient of determination is above 0.97. Next, correlations among wind speeds measured using the FLS and a fixed LiDAR are determined through a field test carried out in Doomi-doo, Tong-young, Gyeongsangnam-do. The FLS is installed 300 m away from the fixed LiDAR on the ground. The results show that the slope of single variant regression is approximately 1.0275 and the coefficient of determination is above 0.971. According to the IEA/wind 18 recommendation, it is found that the developed FLS measures valid wind speeds to assess wind resources for the development of offshore wind farms.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

ENERGY UTILIZATION MODELS OF CATTLE GRAZING IN OIL PALM PLANTATIONS II. VALIDATION OF MODELS

  • Dahlan, I.;Mahyuddin, M.D.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 1995
  • This study showed that models of energy utilization(EU) developed for grazing cattle in oil palm plantations is valid as the simulated results shows an agreement with actual data of calves and cows body weight changes collected from Brahman x Kedah-Kelantan herd on Pengeli Timor Plantation. Simulation runs on EU models demonstrated that the growth pattern of male and female calves and the weight changes of cows are similar and showed slight variation from the actual data but with no significant difference (p > 0.05). Parameter values such as metabolizability (q), dry matter digestibility(DMD) of herbage and voluntary intake of grazing cattle (VIG) and faecal output/body weight ratio (F) of the animals which were collected from the field are essential in bearing the pattern of body weight changes of the calves and cows in relation to increase in time, physiological status and quality of herbage grazed by these animals in the production system. The EU models is suitable for determining the metabolizable energy requirements and to predict the production of grazing cattle according to quality of the feed on offer.

Verification and Validation to develop Safety-critical Software (안전에 중요한 소프트웨어 개발을 위한 확인 및 검증)

  • Lee Jong-Bok;Suh Sang-Moon;Keum Jong-Yong
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.114-119
    • /
    • 2004
  • Software verification and validation(V&V) is a means to develop high-quality software and assure safety and reliability for software. Also, we can achieve the desired software quality through systematic V&V activities. The software to be applied safety critical system like nuclear power plants is required to setup the V&V methodology that comply with licensing requirements for nuclear power plants and should be performed V&V activities according to it. In this paper, we classified safety-critical, safety-related and non-safety for software according to safety function to be peformed and define V&V activities to be applied software grade. Also, we defined V&V activities, procedures and documentation for each phase of software development life cycle and showed techniques and management to perform V&V. Finally, we propose the V&V framework to be applied software development of SMART(System-integrated Modular Advanced ReacTor) MMIS (Man-Machine Interface System) and to comply with domestic licensing requirements.

  • PDF

COMPASS - New modeling and simulation approach to PWR in-vessel accident progression

  • Podowski, Michael Z.;Podowski, Raf M.;Kim, Dong Ha;Bae, Jun Ho;Son, Dong Gun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1916-1938
    • /
    • 2019
  • The objective of this paper is to discuss the modeling principles of phenomena governing core degradation/melting and in-vessel melt relocation during severe accidents in light water reactors. The proposed modeling approach has been applied in the development of a new accident simulation package, COMPASS (COre Meltdown Progression Accident Simulation Software). COMPASS can be used either as a stand-alone tool to simulate in-vessel meltdown progression up to and including RPV failure, or as a component of an integrated simulation package being developed in Korea for the APR1400 reactor. Interestingly, since the emphasis in the development of COMPASS modeling framework has been on capturing generic mechanistic aspects of accident progression in light water reactors, several parts of the overall model should be useful for future accident studies of other reactor designs, both PWRs and BWRs. The issues discussed in the paper include the overall structure of the model, the rationale behind the formulation of the governing equations and the associated simplifying assumptions, as well as the methodology used to verify both the physical and numerical consistencies of the overall solver. Furthermore, the results of COMPASS validation against two experimental data sets (CORA and PHEBUS) are shown, as well as of the predicted accident progression at TMI-2 reactor.

A Systems Engineering Approach to Multi-Physics Load Follow Simulation of the Korean APR1400 Nuclear Power Plant

  • Mahmoud, Abd El Rahman;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • Nuclear power plants in South Korea are operated to cover the baseload demand. Hence they are operated at 100% rated power and do not deploy power tracking control except for startup, shutdown, or during transients. However, as the contribution of renewable energy in the energy mix increases, load follow operation may be needed to cover the imbalance between consumption and production due to the intermittent nature of electricity produced from the conversion of wind or solar energy. Load follow operation may be quite challenging since the operators need to control the axial power distribution and core reactivity while simultaneously conducting the power maneuvering. In this paper, a systems engineering approach for multi-physics load follow simulation of APR1400 is performed. RELAP5/SCDAPSIM/MOD3.4/3DKIN multi-physics package is selected to simulate the Korean Advanced Power Reactor, APR1400, under load follow operation to reflect the impact of feedback signals on the system safety parameters. Furthermore, the systems engineering approach is adopted to identify the requirements, functions, and physical architecture to provide a set of verification and validation activities that guide this project development by linking each requirement to a validation or verification test with predefined success criteria.