• Title/Summary/Keyword: Energy Transmission

Search Result 2,704, Processing Time 0.032 seconds

A High Performance Transmission Method for Massively Delivering Multimedia Data in WMSN (무선 멀티미디어 센서 네트워크(WMSN) 환경에서 멀티미디어 데이터 전송을 위한 대용량 전송 기법에 대한 연구)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.903-917
    • /
    • 2012
  • For transmitting sensed data, wireless sensor networks have been developed and researched for the improvement of energy efficiency, hence, many MAC protocols in WSN employ the duty cycle mechanism. Since the progressed development of the low power transceiver and processor let the high energy efficiency come true, the delivery of the multimedia data which occurs in area of sensor work should be needed to provide supplemental information. In this paper, we design a new scheme for massive transmission of large multimedia data where the duty cycle is used in contention based MAC protocol, for WMSN. The proposed scheme can be applied into the previous duty cycle mechanism because it provides two operation between normal operation and massive transmission operation. Measuring the buffer status of sender and the condition of current radio channel can be criteria for the decision of the above two operations. This paper shows the results of the experiment by performing the simulation. The target protocol of the experiment is X-MAC which is contention based MAC protocol for WSN. And two approaches, both X-MAC which operates only duty cycle and X-MAC which operates combined massive transmission scheme, are used for the comparative experiment.

Lifetime Improvement of Wireless Sensor Network using the Distribution of a Transmission Distance in the SEP (SEP에서 전송 거리 분배를 이용한 무선 센서 네트워크 수명 개선)

  • Lee, Chang-Hee;Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.133-138
    • /
    • 2015
  • In this paper, we propose a method for improving the lifetime of the sensor network SEP through the wireless sensor network divided into two spaces by reducing the transmission distance of the cluster head in the layer in the distance. With reference to the position information of the node, the base station divides the layer based on the midpoint of the nearest node and the furthest distance away from the base station node. And the cluster head in the outer layer far from the base station is transmitted the data to the base station via the cluster head in the inner layer base station to transmit data. That is, we are proposed the layered SEP by reducing the transmission distance of the cluster head in the outer layer for the energy consumption to a minimum. The proposed algorithm is verified by comparison with the existing SEP.

Clustering Algorithm for Extending Lifetime of Wireless Sensor Networks (무선 센서 네트워크의 수명연장을 위한 클러스터링 알고리즘)

  • Kim, Sun-Chol;Choi, Seung-Kwon;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.77-85
    • /
    • 2015
  • Recently, wireless sensor network(WSN) have been used in various fields to implement ubiquitous computing environment. WSN uses small, low cost and low power sensors in order to collect information from the sensor field. This paper proposes a clustering algorithm for energy efficiency of sensor nodes. The proposed algorithm is based on conventional LEACH, the representative clustering protocol for WSN and it prolongs network and nodes life time using sleep technique and changable transmission mode. The nodes of the proposed algorithm first calculate their clustering participation value based on the distance to the neighbor nodes. The nodes located in high density area will have clustering participation value and it can turn to sleep mode. Besides, proposed algorithm can change transmission method from conventional single-hop transmission to multi-hop transmission according to the energy level of cluster head. Simulation results show that the proposed clustering algorithm outperforms conventional LEACH, especially non-uniformly deployed network.

A Numerical Study of Flame Spread of A Surface Forest Fire (지표화 산불의 화염전파 수치해석)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Kim, Kwang-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.80-83
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-dimensional surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-dimensional surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals has a error of less than 20%.

  • PDF

Probability Inference Heuristic based Non-Periodic Transmission for the Wireless Sensor Network (무선센서네트워크를 위한 확률추론 휴리스틱기반 비주기적 전송)

  • Kim, Gang-Seok;Lee, Dong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1689-1695
    • /
    • 2008
  • The development of low-power wireless communication and low-cost multi-functional smart sensor has enabled the sensor network that can perceive the status information in remote distance. Sensor nodes are sending the collected data to the node in the base station through temporary communication path using the low-cost RF communication module. Sensor nodes get the energy supply from small batteries, however, they are installed in the locations that are not easy to replace batteries, in general, so it is necessary to minimize the average power consumption of the sensor nodes. It is known that the RF modules used for wireless communication are consuming 20-60% of the total power for sensor nodes. This study suggests the probability inference heuristic based non-periodic transmission to send the collected information to the base station node, when the calculated value by probability is bigger than an optional random value, adapting real-time to the variation characteristics of sensing datain order to improve the energy consumption used in the transmission of sensed data. In this transmission method suggested, transmitting is decided after evaluation of the data sensed by the probability inference heuristic algorithm and the directly sensed data, and the coefficient that is needed for its algorithm is decided through the reappearance rate of the algorithm verification data.

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

Study on the Basic Design Method of Submerged Breakwater Composed of Double-Layer Permeable Blocks (투수성 블록 2층적으로 구성된 잠제의 기본설계법 연구)

  • Lee, Dal Soo;Oh, Sang-Ho;Park, Yi-Dong;Jeong, Weon-Mu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • The focus of this study is to provide a method for determining the dimension of a submerged breakwater satisfying the target transmission performance or predicting the transmission coefficient of a given structure. This method was developed based on data analysis of the physical experiment that was carried out by using the submerged breakwater composed of double-layer permeable blocks. Two different armor blocks of Tetrapod and Triangular Pyramid Block were used in the experiment. The parameter $K_Th_b/h$ was introduced in the analysis of the measurement data. By using the linear regression line deduced from the analysis of the experimental data, it was possible to readily predict the wave transmission coefficient irrespective different water depths at the crest of the submerged breakwater, under the condition of significant decrease in transmitted wave height due to the submerged breakwater. This method can be effectively utilized for estimating the necessary number of blocks used for the submerged breakwater as well as comparing the transmission characteristics of the submerged breakwater according to use of different armor blocks.

The Effect of Energy-Saving Investment on Reduction of Greenhouse Gas Emissions (에너지절약투자의 온실가스 배출 감소 효과)

  • Kim, Hyeon;Jeong, Kyeong-Soo
    • Environmental and Resource Economics Review
    • /
    • v.9 no.5
    • /
    • pp.925-945
    • /
    • 2000
  • This paper analyses the impact of energy-saving investment on Greenhouse gas emissions using a model of energy demand in Korea. SUR method was employed to estimate the demand equation. The econometric estimates provide information about the energy price divisia index, sector income, and energy saving-investment elasticities of energy demand. Except for energy price divisia, the elasticities of each variable are statistically significant. Also, the price and substitution elasticities of each energy price are similar to the results reported by the previous studies. The energy-saving investment is statistically significant and elasticities of each sector is inelastic. Using the coefficient of energy-saving investment and carbon transmission coefficient, the amount of reduction of energy demand and the reduction of carbon emissions can be estimated. The simulation is performed with the scenario that the energy-saving investment increase by 10~50%, keeping up with Equipment Investment Plan of 30% increase in energy-saving investment by 2000. The results show that the reduction of energy demand measured as 11.2% based upon 1995's level of the energy demand, in industrial sector. Accordingly, the carbon emissions will be reduced by 11.3% based upon 1995's level of the carbon emissions in industrial sector.

  • PDF

Evaluation of Crack-Repairing Performance in Concrete Using Surface Waves (표면탄성파를 활용한 콘크리트 균열 보수 성능 평가 기법)

  • Ahn, Eunjong;Kim, Hyunjun;Gwon, Seongwoo;Sim, Sung-Han;Lee, Kwang Myong;Shin, Myoungsu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.496-502
    • /
    • 2017
  • The purpose of this study is to investigate the applicability of surface-wave techniques for the evaluation of the crack-repairing performance of an epoxy injection method in concrete. In this study, box-shaped concrete specimens with four different crack depths were made with identical mix proportions. The specimens with different crack depths were completely repaired using the same epoxy injection method. The spectral energy transmission ratio of surface waves is used as an index to differentiate the effects of crack depth and crack-repairing performance. The decrease of spectral energy transmission ratio in accordance with the increase of crack depth was identified before repairing. Furthermore, the spectral energy transmission ratio increased after the crack-repairing process in all specimens. The spectral energy transmission ratio is considered as a great indicator for estimating the crack-repairing performance of the epoxy injection method; the ratio was recovered up to almost 95% of the uncracked condition.

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.