• Title/Summary/Keyword: Energy Transfer

Search Result 4,180, Processing Time 0.032 seconds

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

Application of Pulse Current Electrolysis to the Large Scale of Copper and Aluminium Substrates for Solar Selective Coatings on Solar Collectors (실 규모 태양열 집열판 제작을 위한 구리 및 알루미늄 기판에의 태양광 선택흡수박막 전착;Pulse Current Electrolysis 적용)

  • 이태규;김동형;김형택;여운택
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.108-114
    • /
    • 1996
  • It is one of the most important factors to enhance the efficiency of the solar collectors by in-creasing collecting efficiency and decreasing heat loss. The pulse electrodeposition method has been involved in this study to improve characteristics of the solar selective coating on 230cm${\times}$60cm substrates and electrical efficiency of the process. The composition of the electrolyte was 280 g/$\ell$ chromic acid, 15 g/$\ell$ propionic acid, and 10 g/$\ell$ appropriate additive. 230cm${\times}$60cm copper and aluminium sheets were utilized as the substrates. It has been observed that the black chrome coatings exhibited reasonable optical properties for commercialization when the plating parameters were properly controlled; the absorptance was 0.98 and 0.97 and omittance was 0.17 and 0.23 for copper and aluminium substrate, respectively. This study implies that the pulse current electrolysis method could be applied to the large scale substrates, and the various products can be avilable after the consideration of the thermal conductivity, heat transfer efficiency and cost problems of the substrates.

  • PDF

Implementation of CoAP/6LoWPAN over BLE Networks for IoT Services (BLE 네트워크 상에서 사물인터넷 서비스 제공을 위한 CoAP과 6LoWPAN 구현)

  • Kim, Cheol-Min;Kang, Hyung-Woo;Choi, Sang-Il;Koh, Seok-Joo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.298-306
    • /
    • 2016
  • With the advent of Internet of Things (IoT) technology that allows the communications between things and devices over the Internet, a lot of researches on the IoT services, such as smart home or healthcare, have been progressed. In the existing machine-to-machine (M2M) communications, however, since the underlying link-layer technologies, such as Bluetooth or ZigBee, do not use the Internet Protocol (IP) communication, those technologies are not suitable to provide the IoT services. Accordingly, this paper discusses how to provide the Internet services in the M2M communication, and propose an implementation of the Constrained Application Protocol (CoAP) over 6LoWPAN for providing IoT services in the BLE networks. Based on the implementation, we compared the performance between HTTP and CoAP for IoT communications. From the experimental results, we can see that the CoAP protocol gives better performance than the HTTP protocol with two times higher throughput, 21% faster transmission time, and 22% smaller amount of generated packets.

Studies on the Electrochemical Behaviors, Spectrophotometric Determination of Heavy Lanthanide Ions and Heavy Metal Chelate Complexes with Bidentate Ligands(III) -Synthesis and Characterization of the Tetrakis(5,7-dichloro-8-quinolinato)(2-mercaptopyrimidinato) molybdenum(IV) Complex- (무거운 란탄이온의 전기화학적 거동, 분광학적 정량 및 중금속 이온과 두 자리 리간드 착물에 관한 연구(제 3 보): -테트라키스(5,7-디클로로-8-퀴놀리나토)(2-메르캅토피리미디나토) 몰리브데늄(IV) 착물의 합성 및 특성-)

  • Chang, Choo Hwan;Choi, Won Jong;Park, Keun Su;Son, Pyung Su;Suh, Moo Yul
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.417-424
    • /
    • 1993
  • Eight-coordinate tetrakis molybdenum(IV) complexes containing 5,7-dichloro-8-hydroxyquinolinol(Hdcq) and 2-mercaptopyrimidine(Hmpd) has been prepared. $Mo(mpd)_4$, $Mo(dcq)(mpd)_3$, $Mo(dcq)_2(mpd)_2$, $Mo(dcq)_3(mpd)$ and $Mo(dcq)_4$ complexes have been isolated by thin-layer chromatography on silicagel plates. These complexes have been charaterized by $^1H-nmr$ spectrum and UV-Vis. spectrum. The chemical shift values of the protons ${\alpha}$ to the nitrogen in the ligands are shifted to down field. The relative intensities of the peaks which are positioned at the same proton of $Mo(dcq)(mpd)_3$ and $Mo(dcq)_3(mpd)$ are observed in 2:1 ratio, in case of $Mo(dcq)_2(mpd)_2$ appears in approximately a 1:1 ratio. The stereochemistry of the complexes in discussed in terms of their nmr spectrum and Orgel's rule. By vertue of the intensities (${\varepsilon}$>10,000~25,000) the low energy($16,600{\sim}19,800cm^{-1}$) bands are observed for the electronic spectra of the complexes are assigned as charge transfer bands.

  • PDF

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

N2O Decomposition Characteristics and Efficiency Enhancement of Rh/CeO2 Catalyst (Rh/CeO2 촉매의 N2O 분해반응 특성 및 효율증진 연구)

  • Nam, Ki Bok;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.541-548
    • /
    • 2018
  • In this work, the $N_2O$ decomposition catalyst and reaction characteristics to control the $N_2O$ removal were described. Experiments were carried out by using Rh as an active metal catalyst on various supports and the $Rh/CeO_2$ catalyst with $CeO_2$ support showed the best activity for the $N_2O$ decomposition when it was prepared under the constant heat treatment condition ($500^{\circ}C$-4 hr). $H_2-TPR$ and XPS analyzes were performed to confirm the effect of the physical and chemical properties of the catalyst on $N_2O$ decomposition. As a result, it was found that the increase of the oxygen transfer capacity of the catalyst due to the increase of both the redox property and $Ce^{3+}$ amount affected the decomposition reaction of $N_2O$. In addition, the future work will include a treatment process capable of decomposition $N_2O$ and NO under the condition that $N_2O$ and NO are simultaneously generated and its characteristics of $N_2O$ decomposition reaction.

Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction (금속기판에 유전체 후막을 형성시켜 제조한 2층 층상재료에서 두께 방향의 열전도 특성)

  • Kim, Jong-Gu;Jeong, Ju-Young;Ju, Jae-Hoon;Park, Sang-Hee;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.87-92
    • /
    • 2016
  • The importance of heat dissipation for the electric device modules along the thickness direction is increasing. Two types of two-layered materials, metal-metal bonding and dielectric-metal bonding, have been fabricated by roll bonding process and a thermal diffusivity of the specimens was measured along the thickness direction. The thermal diffusivity of specimens with metal-metal bonding measured by light flash analysis (LFA) showed a same value independent on the direction of heat flow. However, the thermal diffusivity of specimens with dielectric-metal bonding showed a big difference of 17.5% when the direction of heat flow changed oppositely in the LFA process. The measured thermal diffusivity of specimens when the heat flows from metal to dielectric direction showed smaller value of 17.5% compared to the value when the heat flow from dielectric to metal direction. The difference in thermal diffusivity of specimens with dielectric-metal bonding dependence on direction of heat flow is due to the electron-phonon resistance that occurred transfer process of electron energy to phonon energy near the interface.