• Title/Summary/Keyword: Energy System Technology

Search Result 6,999, Processing Time 0.038 seconds

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

The Case Study on the Niche Experimentation in Offshore Wind Renewable Energy Transition (해상풍력 기술의 사회-기술시스템 전환과정에 관한 탐색적 사례연구)

  • Kim, Bonggyun;Kim, Dukyoung;Kim, Kyungnam;Kim, Donghwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.2
    • /
    • pp.355-379
    • /
    • 2014
  • For the transition to the low carbon society, it is inevitable but difficult journey that the new energy technology spread co-exists with formal social system. The objective of offshore wind power plant that has been implemented by the government is to connect large capacity new renewable energy to the central electric power system. Therefore, for the successful introduction of offshore wind power system, the transition of the formal social technology system should be companied. This study analysis the energy system transition about niche strategy adjustment using Multiple Level Perspectives & Strategic Niche Management. It also multi level analyzes and structuralizes the process that new technology, as a research result, evolves through connecting and communicating with formal regime and landscape. Also, adjusting Strategic Niche Management, it diagnoses the obstructive factors in the initial stage of niche experiment and found the major reasons why offshore wind power test plant had been delayed. Through this study, it reaches to the practical implication that offshore niche technology could grow stably in the energy system and various policies.

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

A Novel Energy Storage System based on Flywheel for Improving Power System Stability

  • Wu, Jinbo;Wen, Jinyu;Sun, Haishun;Cheng, Shijie
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.447-458
    • /
    • 2011
  • In this paper, a novel flywheel energy storage device, called the flexible power conditioner, which integrates both the characteristics of the flywheel energy storage and the doubly-fed induction machine, is proposed to improve power system stability. A prototype is developed and its principle, composition, and design are described in detail. The control system is investigated and the operating characteristics are analyzed. The test results based on the prototype are presented and evaluated. The test results illustrate that the prototype meets the design requirement on power regulation and starting, and provides a cost-effective and effective means to improve power system stability.

Improvement of aseismic performance of a PGSFR PHTS pump

  • Lee, Seong Hyeon;Lee, Jae Han;Kim, Sung Kyun;Kim, Jong Bum;Kim, Tae Wan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1847-1861
    • /
    • 2020
  • A design study was performed to improve the limit aseismic performance (LSP) of a primary heat transport system (PHTS) pump. This pump is part of the primary equipment of a prototype generation IV sodium-cooled fast reactor (PGSFR). The LSP is the maximum allowable seismic load that still ensures structural integrity. To calculate the LSP of the PHTS pump, a structural analysis model of the pump was developed and its dynamic characteristics were obtained by modal analysis. The floor response spectrum (FRS) initiated from a safety shutdown earthquake (SSE), 0.3 g, was applied to the support points of the PHTS pump, and then the seismic induced stresses were calculated. The structural integrity was evaluated according to the ASME code, and the LSP of the PHTS pump was calculated from the evaluation results. Based on the results of the modal analysis and LSP of the PHTS pump, design parameters affecting the LSP were selected. Then, ways to improve the LSP were proposed from sensitivity analysis of the selected design variables.

The Analysis of Energy Consumption Characteristics of the Apartment (공동주택 에너지 소비 경향 분석에 관한 연구)

  • Lee, Hyun-Jung;Park, Sun-Hyo;Bae, Sang-Hwan;Lee, Byung-Seok;Kim, Yang-Sub
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.305-310
    • /
    • 2012
  • In 2009, The Ministry of Land, Transport and Maritime Affairs, Korea opens apartment maintenance fee to public in "Apartment Management Info System". The high energy consumption component of apartment, which is hot water, water, electricity and heating, is released to public on this system. Through this system, apartment energy consumption and greenhouse gas emissions data can be compiled and expected to be accurately analyzed. Energy consumption and greenhouse gas emissions statistics of the apartment are collected being made to reduce energy and gas emissions. However, The accurate survey of energy consumption trends have not been accomplished. The energy consumption and greenhouse gas emissions survey in Apartment should be made first in order to reduce energy consumption. and then the correlation factors analysis which is affecting energy consumption is required. The purpose of this study is to analyze energy consumption characteristics of apartment in Bundann-gu, Seongnam, Korea in monthly, unit area and building built year basis. And then the research can be used as the basis of policy to Reduce energy consumption and greenhouse gas emissions.

  • PDF

Energy-saving optimization on active disturbance rejection decoupling multivariable control

  • Da-Min Ding;Hai-Ma Yang;Jin Liu;Da-Wei Zhang;Xiao-Hui Jiang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.850-860
    • /
    • 2023
  • An industrial control process multiple-input multiple-output (MIMO) coupled system is analyzed in this study as an example of a Loss of Coolant Accident (LOCA) simulation system. Ordinary control algorithms can complete the steady state of the control system and even reduce the response time to some extent, but the entire system still consumes a large amount of energy after reaching the steady state. So a multivariable decoupled energy-saving control method is proposed, and a novel energy-saving function (economic function, Eco-Function) is specially designed based on the active disturbance rejection control algorithm. Simulations and LOCA simulation system tests show that the Eco-function algorithm can cope with the uncertainty of the multivariable system's internal parameters and external disturbances, and it can save up to 67% of energy consumption in maintaining the parameter steady state.

A simplified normalized cumulative hysteretic energy spectrum

  • Sun, Guohua;Gu, Qiang;Fang, Youzhen
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • For energy-based seismic design, a simplified normalized cumulative hysteretic energy spectrum proposed for obtaining hysteretic energy as energy demand is the main objective in this paper. The dimensionless parameter, ${\beta}_{Eh}$, is presented to express hysteretic energy indirectly. The ${\beta}_{Eh}$ spectrum is constructed directly through subtracting the hysteretic energy of single degree-of-freedom (SDOF) system energy equation. The simplified ${\beta}_{Eh}$ spectral formulation as well as pseudo-acceleration spectrum of modern seismic provisions is developed based on the regression analysis of the large number of seismic responses of SDOF system subjected to earthquake excitations, which considers the influence of earthquake event, soil type, damping ratio, and ductility factor. The relationship between PGV and PGA is established according to the statistical analysis relied on a total of 422 ground motion records. The combination of ${\beta}_{Eh}$ spectrum and PGV/PGA equation allows determining the cumulative hysteretic energy as a main aseismic design indicator.

A Study on Demand-Side Resource Management Based on Big Data System (빅데이터 기반의 수요자원 관리 시스템 개발에 관한 연구)

  • Yoon, Jae-Weon;Lee, Ingyu;Choi, Jung-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1111-1115
    • /
    • 2014
  • With the increasing interest of a demand side management using a Smart Grid infrastructure, the demand resources and energy usage data management becomes an important factor in energy industry. In addition, with the help of Advanced Measuring Infrastructure(AMI), energy usage data becomes a Big Data System. Therefore, it becomes difficult to store and manage the demand resources big data using a traditional relational database management system. Furthermore, not many researches have been done to analyze the big energy data collected using AMI. In this paper, we are proposing a Hadoop based Big Data system to manage the demand resources energy data and we will also show how the demand side management systems can be used to improve energy efficiency.

Home Energy Management System for Residential Customer: Present Status and Limitation

  • Lee, Sunguk;Park, Byungjoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.284-291
    • /
    • 2018
  • As environmental pollution has become worse green technologies to replace or reduce consumption of fossil fuel get spotlight from government, industry and academia globally. It is reported that 40% of carbon dioxide emission is caused by electricity power generation. And 37% of end user electricity power is used by residential costumer in US. Smart Grid is considered as one of promising technology to alleviate severe environmental problem. In residential environment, Home Energy Management System (HEMS) can play a key role for green smart home. The HEMS can give several benefits like aslowering electric utility bill, improvement of efficiency of electric power consumption and integration of generator using renewable energy resources. However just limited functions of HEMS can be used for residential customer in real life because of lack of smart function in home appliances and optimal managing software for HEMS. This study provides comprehensive analysis for Home Energy Management System for residential customer. Simple HEMS system with real products on the market are explained and limitation of current HEMS are also discussed.