• Title/Summary/Keyword: Energy Supply-Chain

Search Result 86, Processing Time 0.024 seconds

The Development of a Energy Monitoring System based on Data Collected from Food Factories (식품공장 수집 데이터 기반 에너지 모니터링 시스템 개발)

  • Chae-Eun Yeo;Woo-jin Cho;Jae-Hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1001-1006
    • /
    • 2023
  • Globally, rising energy costs and increased energy demand are important issues for the food processing and manufacturing industries, which consume significant amounts of energy throughout the supply chain. Accordingly, there is a need for the development of a real-time energy monitoring and analysis system that can optimize energy use. In this study, a food factory energy monitoring system was proposed based on IoT installed in a food factory, including monitoring of each facility, energy supply and usage monitoring for the heat treatment process, and search functions. The system is based on the IoT sensor of the food processing plant and consists of PLC, database server, OPC-UA server, UI server, API server, and CIMON's HMI. The proposed system builds big data for food factories and provides facility-specific monitoring through collection functions, as well as energy supply and usage monitoring and search service functions for the heat treatment process. This data collection-based energy monitoring system will serve as a guide for the development of a small and medium-sized factory energy monitoring and management system for energy savings. In the future, this system can be used to identify and analyze energy usage to create quantitative energy saving measures that optimize process work.

Polymer Electrolyte Membranes Consisting of PVA-g-POEM Graft Copolymers for Supercapacitors (슈퍼커패시터용 PVA-g-POEM 가지형 공중합체로 구성된 고분자 전해질막)

  • Park, Min Su;Kim, Do Hyun;Lee, Jae Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.323-328
    • /
    • 2019
  • It is a highly important problem for mankind to supply sufficient energy, which has been connected to production and supply of electricity. In terms of the problems, this study fabricated a new sort of solid polymer electrolyte membrane for supercapacitors. The fabricated electrolyte employed grafting poly(oxyethylene methacrylate) (POEM) side chain on poly(vinyl alcohol) (PVA) main chain by free-radical polymerization. It is the first time to utilize PVA-g-POEM graft copolymer as an electrolyte membrane for supercapacitor. The chain behavior of PVA was transformed by grafting POEM side chains, which was analyzed by FT-IR spectra. Also, the capacitance performances of fabricated supercapacitors were explored by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and ragone plot. We suggest a new point, the grafting of the electrolyte of supercapacitor in this study.

Study on the Reduction of Energy Consumption in the Pulsed Corona Discharge Process for NOx Removal (질소산화물 제거를 위한 펄스코로나 방전공정의 에너지 소모 저감에 관한 연구)

  • 정재우;손병학;조무현;목영선;남궁원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.475-483
    • /
    • 1999
  • A lab-scale test was carried out to study the reduction of electrical energy consumption in the pulsed corona discharge process for nitrogen oxides removal. The experiment was mainly focused on 1) the activation of pollution removal reactions by chemical additives and 2) the optimization of electrical circuit for the efficient energy transfer from the power supply to the corona reactor. Hydrocarbon chemical additives used in the experiment are thought to be responsible for the enhancement of the NO conversion through the chain reactions of free radicals such as, R, RCO, and RO. Electrical energy consumption per converted NO molecule has a minimum value of 17 eV when pentanol is injected. When ethylene and propylene are injected, 30 eV and 22 eV of electrical energy consumption is required for the conversion of NO molecule respectively. The ratio of the pulse forming capacitance$(C_e)$ to the reactor capacitance$(C_R)$ plays an important role in the energy transfer efficiency to the reactor. Maximum energy transfer efficiency of approximately 72% could be obtained by using the pulse forming capacitance which is 3.4 times larger than the reactor capacitance, and also the maximum NO conversion efficiency was observed with the same condition.

  • PDF

Evaluation of Factors for Effective Distribution of Covid-19 Vaccines

  • RAJU, Totakura Bangar;CHAKRABARTI, Deepankar;DAS, Neenu;MATHUR, Ravi Prakash
    • Journal of Distribution Science
    • /
    • v.20 no.7
    • /
    • pp.57-64
    • /
    • 2022
  • Purpose: The government of India has initiated the Covid-19 Vaccination drive from early January 2021. Vaccination is identified to be best option to protect the people across the globe. However, owing to fast wide spread of the Covid-19, the Vaccine Distribution is a major challenge owing various issues like temperature control, infrastructure, hesitancy, geographical diversity, and other critical factors. Various research is carried out globally to understand and study the Vaccine Distribution issues based on the respective country issues and factors. Research Design, Data, and Methodology: This research paper attempts to explore prominent factors that could be taken up on priority for better and effective vaccination program. The study tries to rank various factors and sub-factors affecting vaccine distribution in India. AHP methodology based on feedback from 22 experts from the Vaccine industry has been deployed to get the desired results. Result: The results show that factors vaccine approval process, geographical prioritization, power supply, infrastructure maintenance costs for vaccine storage, and vaccine pricing are the prominent factors of effective vaccination in the country. Conclusion: The role and need for district-level health officers towards vaccine storage has been brought forward. A long-term effective vaccination policy is needed for optimum vaccine distribution.

Economic Analysis Program Development for Assessment of Hydrogen Production, Storage/Delivery, and Utilization Technologies (수소 전주기 경제성 분석 프로그램 개발)

  • SUHYUN KIM;YOUNGDON YOO;HYEMIN PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.607-615
    • /
    • 2022
  • In this study, economic analysis program was developed for economic evaluation of hydrogen production, storage/delivery, and utilization technologies as well as overseas import of hydrogen. Economic analysis program can be used for the estimation of the levelized cost of hydrogen for hydrogen supply chain technologies. This program include five hydrogen production technology on steam methane reforming and water electrolysis, two hydrogen storage technologies (high compressed gas and liquid hydrogen storage), three hydrogen delivery technologies (compressed gas delivery using tube trailer, liquid hydrogen, and pipeline transportation) and six hydrogen utilization technologies on hydrogen refueling station and stationary fuel cell system. In the case of overseas import hydrogen, it was considered to be imported from five countries (Austraila, Chile, India, Morocco, and UAE), and the transportation methods was based on liquid hydrogen, ammonia, and liquid organic hydrogen carrier. Economic analysis program that was developed in this study can be expected to utilize for planning a detailed implementation methods and hydrogen supply strategies for the hydrogen economy road map of government.

Operation System Design of Distribution Feeder with Distributed Energy Resources (분산전원이 연계된 배전선로의 운영시스템 설계)

  • Kim, Seong-Man;Chang, Young-Hak;Kim, Kyeong-Hun;Kim, Sul-Ki;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1183-1194
    • /
    • 2021
  • Traditionally, electric power systems have been known as the centralized structures, which is organized into placing customers at the end of the supply chain. However, recent decades have witnessed the emergence of distributed energy resources(:DERs) such as rooftop solar, farming PV system, small wind turbines, battery energy storage systems and smart home appliances. With the emergence of distributed energy resources, the role of distributed system operators(:DSOs) will expand. The increasing penetration of DERs could lead to a less predictable and reverse flow of power in the system, which can affect the traditional planning and operation of distribution and transmission networks. This raises the need for a change in the role of the DSOs that have conventionally planned, maintained and managed networks and supply outages. The objective of this research is to designed the future distribution operation system with multi-DERs and the proposed distribution system model is implemented by hardware-in-the-loop simulation(HILS). The test results show the normal operation domain and reduction of distribution line loss.

A Review of U.S. Renewable Energy Expansion and Support Policies (미국의 재생 에너지 확대 및 지원정책 연구)

  • Kim, Chu
    • Land and Housing Review
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The purpose of this study is to review the U.S. renewable energy policies implemented by the federal government and the state governments to investigate potential barriers of renewable energy expansion and to develop policy implications for the successful renewable energy policy making in Korea. Recently, the restructuring in the energy supply chain has been being a new trend in many countries that shows a transition from traditional fossil fuels to sustainable renewable energy sources. The United States has enforced effective renewable energy policies (i.e., regulatory policies, financial incentives), which have led to the exploding growth of renewable energy facilities and productions over the last ten years. For example, many state governments in the U.S. are implementing Renewable Portfolio Standard (RPS) policies that require increased energy supply from renewable energy sources (i.e., solar, wind and geothermal). These RPS policies are expected to account for at least 10-50 percent of total electricity production in the next fifteen years. As part of results, in the recent three years, renewable energy in the U.S provided over 50 percent of total new power generation constructions. On the other hand, Korea initiated to develop climate change policies in 2008 for the Green Growth Policy that set up a target reduction of national Greenhouse Gas (GHG) emissions up to 37 percent by 2025. However, statistical data for accumulated renewable energy capacity refer that Korea is still in its early stage that contribute to only 7 percent of the total electricity production capacity and of which hydroelectric power occupied most of the production. Thus, new administration in Korea announced a new renewable energy policy (Renewable Energy 3020 Plan) in 2017 that will require over 95 percent of the total new generations as renewable energy facilities to achieve up to 20 percent of the total electricity production from renewable energy sources by 2030. However, to date, there have not been enough studies to figure out the barriers of the current policy environment and to develop implications about renewable energy policies to support the government plan in Korea. Therefore, this study reviewed the U.S. renewable energy policies compared with Korean policies that could show model cases to introduce related policies and to develop improved incentives to rapidly spread out renewable energy facilities in Korea.

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea (국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안)

  • Oh, Il-Hwan;Heo, Chul-Ho;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.399-406
    • /
    • 2022
  • In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

Research towards New Innovation Strategies in Korea via Focused Group Method

  • Park, Sung-Uk;Kwak, Jae-Won;Kim, Hyun-Cheol
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.2
    • /
    • pp.222-237
    • /
    • 2022
  • As the COVID-19 pandemic crisis left developing countries with economic setbacks, it is high time to highlight that innovative technologies lead the digital economy. The big powers including the United States and China are already implementing industrial policies that involve large-scale fiscal expenditures to secure the lives and safety of their people. To prepare for the future up to 2025, this paper reflects opinions of industry-academia-research experts regarding changes in the external environment and industry trends. By reflecting results of focus group interviews and changes in the external environment and industry trends, a new high-level 5X strategy (Digital Transformation, Energy Transformation, Bio Health Transformation, Supply Chain Transformation, and Research Transformation) to solve national tasks required for the existing ten policy demand fields and ten agenda during lower-level policy implementation stages were derived.