• Title/Summary/Keyword: Energy Standard

Search Result 3,170, Processing Time 0.029 seconds

Comparing the actual heating energy with calculated energy by the amended standard building energy rating system for apartment buildings (건축물에너지효율등급 평가프로그램에 의한 공동주택 난방에너지 소요량과 실제 사용량 비교)

  • Lee, A-Ram;Kim, Jeong-Gook;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong;Song, Kyoo-Dong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.103-107
    • /
    • 2015
  • Purpose: Since September 1st, 2013, subjects of the evaluation have been expanded, and the evaluation standard has been detailed to enable Building energy rating system for all buildings. Accordingly, the new evaluation program (ECO2) has been developed, and therefore, apartment applied after September 1st, 2013 were evaluated with the new evaluation program. Therefore, this research suggests the improvement plan to figure out reasons for the evaluation result calculation and to calculate the evaluation results close to the actual energy usage by analyzing and comparing primary energy consumption as a result of the new evaluation program (ECO2) and actual heating energy usage on the same building. Method: When comparing evaluation results of the new evaluation program (ECO2) and actual heating energy usage, the tendency was similar but different. Also when comparing seasonally, the tendency was similar, but the different between actual heating energy usage and primary energy consumption during winter is greater than during spring or fall, and when comparing seasonal electric usage, heating alternatives were used through increased electrical usage during winter compared to during spring or fall. Result: Therefore, when evaluating apartment with the new program (ECO2) in the future, evaluation items relevant to the use of heating alternatives should be added, and the modification factor should be added according to the region. Based on the evaluation results of the research and actual energy usage, the Modification factors of the central part and the southern part were calculated respectively as 0.5 and 0.8.

Thermal and Non-thermal Heat Flow in a Large Crystal Detector for Neutrinoless Double Beta Decay Search

  • Kim, G.B.;Lee, S.J.;Jang, Y.S.;Lee, H.J.;Lee, J.H.;Lee, J.Y.;Lee, M.K.;Yoon, W.S.;Kim, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.87-91
    • /
    • 2012
  • Metallic magnetic calorimeters (MMCs) are one of the most competitive low temperature detector (LTD) readout sensors. They have the advantages of high time resolution, no heat dissipation, and a wide range of operating temperature. We apply MMCs to our neutrinoless double beta decay ($0v{\beta}{\beta}$) search experiment. A $CaMoO_4$ crystal was employed as both a source of $0v{\beta}{\beta}$ and an energy absorber. The crystal was thermally connected to a MMC sensor. We set a simple thermal model for this detector and measured pulse shapes are compared with a numerical solution of the thermal model.

A Study on the Determination of Recycling Standard and Stage in Paper Scrap (폐지 재활용 기준 및 재활용 단계 설정에 관한 연구)

  • Min, Dal-Ki;Seo, Kwang-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • Objectives: The purpose of this paper is to define the level of recycling standards and its process in paper scrap. As pollution is increased by improperly treated paper scrap, the government has recently strengthened the management of the paper scrap. Methods: In this study, the current status of paper scrap recycling was investigated through a 2012 field survey, and the classification and recycling standards for paper scrap in developed countries and institutions were also investigated through a literature review in order to introduce optimal recycling standards. Results: As a result, the contents of contaminants were identified as the most important recycling standard, and the contents of contaminants in paper scrap was measured at less than 1.0% at most companies. The recycling standard for paper scrap was determined to be below 3% contaminants in the case of paper and 5% in the case of board. In this study, recycling stage was determined by considering regulations on resources and practices in the field. Conclusions: The recycling standard for paper scrap was determined to be below 3% and 5% contaminants for paper and board, respectively.

Minimum Covering Randic Energy of a Graph

  • Prakasha, Kunkunadu Nanjundappa;Polaepalli, Siva Kota Reddy;Cangul, Ismail Naci
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.701-709
    • /
    • 2017
  • In this paper, we introduce the minimum covering Randic energy of a graph. We compute minimum covering Randic energy of some standard graphs and establish upper and lower bounds for this energy. Also we disprove a conjecture on Randic energy which is proposed by S. Alikhani and N. Ghanbari, [2].

Development of Awning System using Light Shelf - Focusing on the light environment and lighting energy reduction performance improvement -

  • Jeong, Jinsoo;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.5-13
    • /
    • 2017
  • Purpose: Various studies have been performed to address the issue of increased energy use by buildings. In particular, research on complex envelopes that combines diverse envelope element techniques is currently in progress in the building sector. The present study aimed to develop an awning system using a light shelf, and to verify its validity through performance evaluation. Method: In the present study, a testbed was established for the performance evaluation of the awning system using a light shelf, and the uniformity ratio and lighting energy consumption were compared and analyzed relative to those with no awning and light shelf installation (Case 1), awning installation (Case 2), and light shelf installation (Case 3). Result: 1) In the present study, an awning system using a light shelf (Case 4) where an opening is made on the awning screen and natural light can be introduced through the light shelf located at the bottom was developed. 2) The optimum standard for Case 4 obtained through the performance evaluation was a 0.6m lighting length and a 2m extension length at a light shelf angle of $30^{\circ}$. 3) Case 4 with the optimum standard had a 5.5% lower uniformity ratio than Case 2, but had a higher uniformity ratio than Case 1 and Case 3. 4) Case 4 with the optimum standard showed 13.3%, 44.6%, and 0%~8.7% lighting energy reductions compared to Case 1, Case 2, and Case 3, respectively. 5) Based on the above results, Case 4 suggested in the present study was found to be effective for indoor light environment improvement and lighting energy reduction.

A study on the annual energy performance of apartment building with the equivalent U-value of envelope considering the effect of thermal bridges (공동주택 외피의 열교영향을 고려한 상당열관류율 및 연간 에너지소비성능 평가 연구)

  • Kim, Dong Su;Yoon, Jong Ho;Shin, U Cheul;Kwak, Hee Yul
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2012
  • The building envelope is important specially for saving energy consumption of residential buildings. but Apartment houses in Korea commonly have inside insulation system which have constantly arisen thermal bridges, the risk of heat loss, as a necessity. This study aims to evaluate integrated insulation performance according to the different shapes of external walls, adjacent to windows. The thermal performance analysis was carried out by Equivalent U-value and using the three-dimensional heat transfer computer simulation (TRISCO-RADCON), under nine different cases of comparing among three each of different bases(current standard model, 30percent energy saving model and 60percent energy saving model). The heating and the cooling load were also compared between two cases (standard U-value and Equivalent U-value) of three each of different bases, using the Building energy simulation which is based on DOE-2.1 analysis. As results, it turns out that if the Equivalent U-value is considered on the envelope analysis, the heat flow loss will be increasing more than the standard U-value, and if heat insulation property of the residential building reinforced rather than current, the rate of influences on the thermal bridges would be extremely expanded. In addition, it is shown that annual heating loads of the apartment house with applied Equivalent U-value substantially increased by more than 15 percent compared to those with the existing U-value, but annual cooling loads were negligibly affected.

A Study of Critical Items and Related Standards on Designing for Passive Apartments (패시브 공동주택 계획을 위한 설계 중점항목 및 관련 기준 연구)

  • Lee, Myoung-Ju
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.7
    • /
    • pp.21-29
    • /
    • 2018
  • This study aimed to find and suggest the purpose of future plans, critical items on designing and Related standards to amend construction standards for domestic energy saving and environmentally friendly housings. It would also activate and increase the supplies of passive house minimizing the problems on current apartment housings in winter and reducing heating energy which brings fine dust pollution. After defining the standard model of Korean apartment housings(reference model), this study calculated the amount of heating energy demand per unit area annually as applying the yearly changed standards from 2008 to 2017 to existing standard model. It turned out that applying 2017 construction standards of energy saving and eco-friendly housings to reference model has saved up to 75% of heating energy demand comparing to the one applied 2008's. However, it still could not solve the fundamental problems such as winter fungus, condensation, freezing, freeze and burst, and insulation weakness space, and could not be free from fine dust particles. To solve them, this study suggested improved standards adding critical items on design related to outside insulation, cut off the heat-bridge, enforce air-tightness and heat change efficiency on heat recovery ventilator. As a result, it has reduced more than 10% of heat demand from 2017. It would be more than 90% of savings from 2008 if we make the amount of heat loss be zero on heat bridge on designing stage in the future.