Thermal and Non-thermal Heat Flow in a Large Crystal Detector for Neutrinoless Double Beta Decay Search

  • Kim, G.B. (Korea Research Institute of Standard Science) ;
  • Lee, S.J. (Korea Research Institute of Standard Science) ;
  • Jang, Y.S. (Korea Research Institute of Standard Science) ;
  • Lee, H.J. (Korea Research Institute of Standard Science) ;
  • Lee, J.H. (Korea Research Institute of Standard Science) ;
  • Lee, J.Y. (Korea Research Institute of Standard Science) ;
  • Lee, M.K. (Korea Research Institute of Standard Science) ;
  • Yoon, W.S. (Korea Research Institute of Standard Science) ;
  • Kim, Y.H. (Korea Research Institute of Standard Science)
  • Received : 2012.12.17
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

Metallic magnetic calorimeters (MMCs) are one of the most competitive low temperature detector (LTD) readout sensors. They have the advantages of high time resolution, no heat dissipation, and a wide range of operating temperature. We apply MMCs to our neutrinoless double beta decay ($0v{\beta}{\beta}$) search experiment. A $CaMoO_4$ crystal was employed as both a source of $0v{\beta}{\beta}$ and an energy absorber. The crystal was thermally connected to a MMC sensor. We set a simple thermal model for this detector and measured pulse shapes are compared with a numerical solution of the thermal model.

Keywords

References

  1. Bilenky, S. M. Physics of Particles and Nuclei 41, 5, 690-715 (2010). https://doi.org/10.1134/S1063779610050035
  2. Zuber, K., arXiv preprint nucl-ex/0610007 (2006).
  3. Majorana, E., Nuovo Cim. 14, 171 (1937). https://doi.org/10.1007/BF02961314
  4. Bhang, H., et al. J. Phys.: Conf. Ser. 375 042023 (2012). https://doi.org/10.1088/1742-6596/375/1/042023
  5. Annenkov, A. N., et al. Nucl. Istr. Meth. A, 584, 2, 334-345 (2008). https://doi.org/10.1016/j.nima.2007.10.038
  6. Burck, A., et al. J. Low Temp. Phys., 151, 1, 337-344 (2008). https://doi.org/10.1007/s10909-007-9659-4
  7. Yoon, W. S., et al. J. Low Temp. Phys., 167, 2, 280-285 (2012). https://doi.org/10.1007/s10909-012-0539-1
  8. Kapitza, P. L., Phys. Rev. 60, 354 (1941). https://doi.org/10.1103/PhysRev.60.354
  9. Hopkins, P. E., et al. J. Appl. Phys. 105, 023710 (2009). https://doi.org/10.1063/1.3068476
  10. Franz, R. and Wiedemann, G., Ann. Phys., 165, 497-531 (1853). https://doi.org/10.1002/andp.18531650802