• Title/Summary/Keyword: Energy Scenario

Search Result 527, Processing Time 0.025 seconds

Urban Mobility Simulation (도시 교통 시뮬레이션)

  • Kim, Kyoung-Ah;Kim, Duk-Su;Yoon, Sung-Eui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • We propose an intelligent ribbon road network for automatic vehicle simulation, and a real-time algorithm for large-scale, realistic traffic simulation based on artificial energy functions. Our method reconstructs a road network automatically from both GIS (Geographic Information System) real-world data and synthetic models. Such automatic road network helps us to easily simulate almost every possible scenario such as intersections, ramps, etc. In order to simulate agents' movement, we design car-environment interaction energy and car-car interaction energy functions. Car agents move along the road network according to the proposed energy functions while avoiding collisions with other car agents.

Simulation of aquifer temperature variation in a groundwater source heat pump system with the effect of groundwater flow (지하수 유동 영향에 따른 지하수 이용 열펌프 시스템의 대수층 온도 변화 예측 모델링)

  • Shim, Byoung-Ohan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.701-704
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having influenced by groundwater movement, understanding of thermo hydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.00 1 are shaped circular, and the center is moved less than 5m to the groundwater flow direction in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

Bayesian Optimization Analysis of Containment-Venting Operation in a Boiling Water Reactor Severe Accident

  • Zheng, Xiaoyu;Ishikawa, Jun;Sugiyama, Tomoyuki;Maruyama, Yu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.434-441
    • /
    • 2017
  • Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

Development of an information reference system using reconstruction models of nuclear power plants

  • Harazono, Yuki;Kimura, Taro;Ishii, Hirotake;Shimoda, Hiroshi;Kouda, Yuya
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.606-612
    • /
    • 2018
  • Many nuclear power plants in Japan are approaching the end of their planned operational life spans. They must be decommissioned safely in the near future. Using augmented reality (AR), workers can intuitively understand information related to decommissioning work. Three-dimensional (work-site) reconstruction models of dismantling fields are useful for workers to observe the conditions of dismantling field situations without visiting the actual fields. This study, based on AR and work-site reconstruction models, developed and evaluated an information reference system. The evaluation consists of questionnaires and interview surveys administered to six nuclear power plant workers who used this system, along with a scenario. Results highlight the possibility of reducing time and mitigating mistakes in dismantling fields. Results also show the ease of referring to information in dismantling fields. Nevertheless, it is apparently difficult for workers to build reconstruction models of dismantling fields independently.

EVALUATION OF HEAT-FLUX DISTRIBUTION AT THE INNER AND OUTER REACTOR VESSEL WALLS UNDER THE IN-VESSEL RETENTION THROUGH EXTERNAL REACTOR VESSEL COOLING CONDITION

  • JUNG, JAEHOON;AN, SANG MO;HA, KWANG SOON;KIM, HWAN YEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • Background: A numerical simulation was carried out to investigate the difference between internal and external heat-flux distributions at the reactor vessel wall under in-vessel retention through external reactor vessel cooling (IVR-ERVC). Methods: Total loss of feed water, station blackout, and large break loss of coolant accidents were selected as the severe accident scenarios, and a transient analysis using the element-birth-and-death technique was conducted to reflect the vessel erosion (vessel wall thickness change) effect. Results: It was found that the maximum heat flux at the focusing region was decreased at least 10% when considering the two-dimensional heat conduction at the reactor vessel wall. Conclusion: The results show that a higher thermal margin for the IVR-ERVC strategy can be achieved in the focusing region. In addition, sensitivity studies revealed that the heat flux and reactor vessel thickness are dominantly affected by the molten corium pool formation according to the accident scenario.

THERMAL HYDRAULIC ISSUES OF CONTAINMENT FILTERED VENTING SYSTEM FOR A LONG OPERATING TIME

  • Na, Young Su;Ha, Kwang Soon;Park, Rae-Joon;Park, Jong-Hwa;Cho, Song-Won
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.797-802
    • /
    • 2014
  • This study investigated the thermal hydraulic issues in the Containment Filtered Venting System (CFVS) for a long operating time using the MELCOR computer code. The modeling of the CFVS, including the models for pool scrubbing and the filter, was added to the input file for the OPR-1000, and a Station Blackout (SBO) was chosen as an accident scenario. Although depressurization in the containment building as a primary objective of the CFVS was successful, the decontamination feature by scrubbing and filtering in the CFVS for a long operating time could fail by the continuous evaporation of the scrubbing solution. After the operation of the CFVS, the atmosphere temperature in the CFVS became slightly above the water saturation temperature owing to the release of an amount of steam with high temperature from the containment building to the scrubbing solution. Reduced pipe diameters at the inlet and outlet of the CFVS vessel mitigated the evaporation of scrubbing water by controlling the amount of high-temperature steam and the water saturation temperature.

Development of Efficient Operational Mode for Wind-Diesel Hybrid System

  • Asghar, Furqan;Kim, Se-Yoon;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.554-561
    • /
    • 2014
  • Hybrid wind Diesel stand-alone power systems are considered economically viable and effective to create balance between production and load demand in remote areas where the wind speed is considerable for electric generation, and also, electric energy is not easily available from the grid. In Wind diesel hybrid system, the wind energy system is the main constitute and diesel system forms the back up. This type of hybrid power system saves fuel cost, improves power capacity to meet the increasing demand and maintains the continuity of supply in the system. Problem we face in this system is that even after producing enough power through wind turbine system, considerable portion of this power needs to be dumped due to short term oversupply of power and to maintain the frequency within close tolerances. As a result remaining portion of total energy supplied comes from the diesel generator to overcome the temporal energy shortage. This scenario decreases the overall efficiency of hybrid power system. In this study, efficient Simulink modeling for wind-diesel hybrid system is proposed and some simulations study is carried out to verify the feasibility of the proposed scheme.

Implementation of Natural Behavior Patterns of Monster based on Energy Model (에너지 모델 기반으로 한 몬스터의 자연스러운 행동 패턴 구현)

  • Lee, Jae Moon;Lim, Seong Kyu
    • Journal of Korea Game Society
    • /
    • v.14 no.5
    • /
    • pp.87-96
    • /
    • 2014
  • In developing games, realism is considered as an important factor to increase immersion. To do this, the paper developed 'Jungle Master' game applying the conventional energy model to movement of monsters in RPG. The main scenario of the game is that animals attack each other in order to survive the competition in jungle. While chasing monster : fleeing monster is 1:1 in the conventional energy model, it is extended as n:1 in order to increase fun. As the results, this paper showed that the energy model can be effectively applied to the real game and monsters can be implemented so that they can move in natural.

Improving Collision Energy Absorption In High Speed Train By Using Thin Walled Tubes

  • Salimi, Ehsan;Molatefi, Habib;Rezvani, MohammadAli;Shahsavari, Erfan
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of this paper is investigating the effect and influence rates of utilizing thin walled energy absorption tubes for improving crashworthiness parameter by increasing energy absorption of the body in high speed railcars. In order to find this, a proper profile of available tubes is chosen and added to the structure of selected high speed train in Iranian railway network (Pardis Trainset) and then examined in the scenario of impact with other moving rolling stock. Because of the specific features of LS-DYNA 3D software at collision analysis, the dynamic simulation has been performed in LS-DYNA 3D. The results of the analysis clearly indicate the improvement of train crashworthiness as the energy absorption of structure increases more than 30 percent in comparison with the original body. This strategy delays and reduces the shock to the structure. The verification of the simulation is by using ECE R66 standard.

Cross-Layer Reduction of Wireless Network Card Idle Time to Optimize Energy Consumption of Pull Thin Client Protocols

  • Simoens, Pieter;Ali, Farhan Azmat;Vankeirsbilck, Bert;Deboosere, Lien;Turck, Filip De;Dhoedt, Bart;Demeester, Piet;Torrea-Duran, Rodolfo;Perre, Liesbet Van der;Dejonghe, Antoine
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • Thin client computing trades local processing for network bandwidth consumption by offloading application logic to remote servers. User input and display updates are exchanged between client and server through a thin client protocol. On wireless devices, the thin client protocol traffic can lead to a significantly higher power consumption of the radio interface. In this article, a cross-layer framework is presented that transitions the wireless network interface card (WNIC) to the energy-conserving sleep mode when no traffic from the server is expected. The approach is validated for different wireless channel conditions, such as path loss and available bandwidth, as well as for different network roundtrip time values. Using this cross-layer algorithm for sample scenario with a remote text editor, and through experiments based on actual user traces, a reduction of the WNIC energy consumption of up to 36.82% is obtained, without degrading the application's reactivity.