• Title/Summary/Keyword: Energy Reduction Design

Search Result 786, Processing Time 0.026 seconds

Optimized design of dual steel moment resisting system equipped with cross-anchored self-centering buckling restrained chevron brace

  • Khaneghah, Mohammadreza Ahadpour;Dehcheshmaeh, Esmaeil Mohammadi;Broujerdian, Vahid;Amiri, Gholamreza Ghodrati
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • In most self-center braces, decreasing residual deformation is possible only by increasing pretension force, which results in lower energy dissipation capacity. On the other hand, increasing energy dissipation capacity means higher values of residual deformation. The goal of this research was to find the best design for a self-centering buckling restrained brace (SC-BRB) system by balancing self-centering capability and energy dissipation. Three, six, and nine-story structures were investigated using OpenSees software and the TCL programming language to achieve this goal. For each height, 62 different SC-BRBs were considered using different values for the pretension force of cables, the area of the buckling restrained brace (BRB) core plate, and the yield stress of the core plate. The residual deformation and dissipated energy of all the models were calculated using nonlinear analyses after cyclic loading was applied. The optimum design for each height was determined among all the models and was compared to the structure equipped with the usual BRB. The residual deformation of the framed buildings was significantly reduced, according to the findings. Also the reduction of the energy dissipation was acceptable. The optimum design of SC-BRB in 6-story building has the most reduction percent in residual deformation, it can reduce residual deformation of building 83% while causing only a 57% of reduction in dissipated energy. The greatest reduction in residual deformation versus dissipated energy reduction was for the optimum SC-BRB design of 9-story building, results indicated that it can reduce residual deformation of building 69% while causing only a 42% of reduction in dissipated energy.

Meeting the Energy Reduction Goal on a High Rise Building thru IPD Framework

  • Jeong, Pyung Oh;Lee, Peter;Kim, Sang-jin
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.93-96
    • /
    • 2013
  • Greenhouse gas emissions and excessive energy consumption have been an on-going world issue nowadays. We can find that the majority portion is caused by high-rise office buildings. In order to resolve these problems, it is extremely important to implement various active or passive strategies in a building design. To successfully meet these design goals and energy reduction approaches, a project building must utilize an efficient design process from the early start. One of the most effective project delivery process called Integrated Project Delivery (IPD) will be implemented in a case study project building (KEPCO) during design phase and show how important it is to plan a project's green environmental performance goal together through an early collaboration from all key project participants, which helps to construct an successful green building design without any critical construction pitfalls.

A BIM-based Design Method for Energy-Efficient Housing (BIM 기반의 저에너지 주거공간 설계 기법 연구)

  • Yoon, Seung-Hyun;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.187-192
    • /
    • 2009
  • Nowadays, global warming and high oil prices were a threat to the survival of the whole human race. One of a solution to respond to these problems is to reduce energy consumption of building. By adopting energy-saving design, the dissemination of low energy building is required. Therefore, to improve energy efficiency while reducing the usage of the design method is necessary to study actively. BIM-based systems applied to buildings, scheduled to be built by reducing the amount of energy reduction technologies can be analyzed. Depending on various design and equipment to set energy savings goals, you can select an alternative. If it is possible to predict the energy efficiency from the initial stage of design and support designing low energy building, we would be able to expect improvement in the economics of housing due to the reduction of energy consumption.

  • PDF

A CO2 Emission Reduction Method through Correlation Analysis of Design Parameters in Buildings (건축물 설계변수의 상관관계 분석을 통한 CO2 배출저감 방안)

  • Lee, Hyun-Woo;Chae, Min-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.100-106
    • /
    • 2011
  • This study proposes a $CO_2$ emission reduction method through correlation analysis of a sample building. First, energy saving factors of heating, cooling, lighting were determined for the correlation analysis and $CO_2$ emission contribution rate of the design parameters have been analyzed. Then optimal combination of each design parameter has been drawn. Heat transfer coefficient of walls and windows, air permeability, windows area ratio, and shading devices were selected as applicable energy saving factors of the sample building. Also computer simulation was conducted using experimental design by Orthogonal Arrays of the statistical method. And the contribution rate was estimated by Analysis of Variance-ANOVA. As a result, the $CO_2$ emission in heating was reduced to 51.9%; in cooling to 16.8%; and in lighting to 2% compared to the existing building. The majority of the reduction was presented by heating energy.

A Study on Heating Energy Monitoring of a Rural Detached House Applying Passive House Design Components (패시브 하우스 디자인 요소를 적용한 농촌지역 단독주거건물의 난방에너지 모니터링 연구)

  • Cho, Kyung-Min;Lee, Tae-Goo;Han, Young-Hae
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the field of construction is putting a variety of effort into reducing CO2, since global warming is being accelerated due to climate changes and the increase of greenhouse gas. For reduction of CO2 in the field of construction, it is required to make plans to cut down heating energy of buildings and especially, it is urgently needed to cut down energy of residential buildings in rural area where occupies the majority of consumption of petroleum-based energy sources. Therefore, this research compared and analyzed the actual energy consumption, by evaluating energy performance of a detached house applying passive house design components for reduction of energy. As the result, energy consumption showed remarkable differences, according to the operation of a heat recovery ventilation unit which is one of passive house design components, and building energy consumption displayed remarkable differences, too, depending on the difference of airtightness performance during building energy simulation conducted in process of design. Based on these results, the importance of airtightness performance of passive house was verified. The result of the actual measurement of energy consumption demonstrated that LNG was most economical amongst several heat resources yielded, on the basis of LPG source energy consumption measured within a certain period of time, and it was followed by kerosene. LPG was analyzed to have a low economic efficiency, when used for heating.

Energy-based damage-control design of steel frames with steel slit walls

  • Ke, Ke;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1157-1176
    • /
    • 2014
  • The objective of this research is to develop a practical design and assessment approach of steel frames with steel slit walls (SSWs) that focuses on the damage-control behavior to enhance the structural resilience. The yielding sequence of SSWs and frame components is found to be a critical issue for the damage-control behavior and the design of systems. The design concept is validated by the full-scale experiments presented in this paper. Based on a modified energy-balance model, a procedure for designing and assessing the system motivated by the framework regarding the equilibrium of the energy demand and the energy capacity is proposed. The damage-control spectra constructed by strength reduction factors calculated from single-degree-of-freedom systems considering the post stiffness are addressed. A quantitative damage-control index to evaluate the system is also derived. The applicability of the proposed approach is validated by the evaluation of example structures with nonlinear dynamic analyses. The observations regarding the structural response and the prediction during selected ground motions demonstrate that the proposed approach can be applied to damage-control design and assessment of systems with satisfactory accuracy.

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

Design of Loss-reduction Mechanisms for Energy Recovery Devices in Reverse-osmosis Desalination systems (역삼투 담수시스템용 에너지회수장치의 손실극복 메커니즘 설계)

  • Ham, Y.B.;Kim, Y.;Noh, J.H.;Shin, S.S.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2012
  • Novel mechanisms for Energy Recovery Devices are proposed to diminish the pressure loss in the high-pressure reverse-osmosis system. In the beginning, the state-of-the-art in the design of Energy Recovery Devices is reviewed and the features of each model are investigated. The direct-coupled axial piston pump(APP) and axial piston motor(APM) showed 39% energy recovery at operating pressure of reverse osmosis desalination systems, 60 bar. Meanwhile, the developed PM2D model, in which APM pistons are arranged parallel to those of APP, is more compact and showed higher efficiency in a preliminary test. Loss-reduction mechanisms employing rod piston and double raw valve port are additionally proposed to enhance the efficiency and durability of the device.

A Study on Realization Method of Low Carbon School Building (저 탄소 학교건축물 구현 방안에 관한 연구)

  • Tae, Sung-Ho;Cho, Young-Sang;Shin, Sung-Woo;Lee, Seung-Min;Meang, Joon-Ho
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.9 no.2
    • /
    • pp.30-37
    • /
    • 2010
  • This study purposed realization and a phase reduction of school building $CO_2$ emissions. Accordingly selected standard school buildings and evaluated life cycle environmental load($CO_2$). This study proposed Green building technology which separated design sector, energy sector, afforestation sector for carbon-neutral city school buildings realization of M-city. As a result, elementary, middle and high schools of M-city built in the year 2013 were required that design sector was Energy Performance Index(EPI) 75 point and energy sector was solar installations more than 25% of the power usage, Solar systems installed more than 10% of total gas consumption and the area of afforesting more than 35% of the ecological area to achieve 30% $CO_2$ reduction compared to the Respectively standard school buildings.

A Study on the Development of Building Envelope Elements for Energy Reduction in Multi- Rise Residential Buildings

  • Lee, Myung Sik
    • Architectural research
    • /
    • v.18 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • It is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to find an optimal thermal transmittance (U-values) for building envelope elements for low energy multi-rise residential buildings in the early design phase in Korea. The study found that using small U-values of $0.15w/m^2K$ for exterior walls, ceilings and floors and $1.0w/m^2K$ for south and north facing windows has resulted in energy reduction of 22.1%-59.4% in the south facing rooms and 43%-77.6% of the north facing rooms. It has also found the energy load reduction potential of using small U-values are higher on the north facing rooms. The findings of this study can be suggested to be used as a baseline case for low energy consumption studies. It can also be used to determine appropriate envelope materials and insulation values.