• Title/Summary/Keyword: Energy Reduction

Search Result 5,066, Processing Time 0.029 seconds

VOLUME REDUCTION OF DISMANTLED CONCRETE WASTES GENERATED FROM KRR-2 AND UCP

  • Min, Byung-Youn;Choi, Wang-Kyu;Lee, Kune-Woo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • As part of a fundamental study on the volume reduction of contaminated concrete wastes, the separation characteristics of the aggregates and the distribution of the radioactivity in the aggregates were investigated. Radioisotope $^{60}Co$ was artificially used as a model contaminant for non-radioactive crushed concrete waste. Volume reduction for radioactively contaminated dismantled concrete wastes was carried out using activated heavy weight concrete taken from the Korea Research Reactor 2 (KRR-2) and light weight concrete from the Uranium Conversion Plant (UCP). The results showed that most of the $^{60}Co$ nuclide was easily separated from the contaminated dismantled concrete waste and was concentrated mainly in the porous fine cement paste. The heating temperature was found to be one of the effective parameters in the removal of the radionuclide from concrete waste. The volume reduction rate achieved was above 80% for the KRR-2 concrete wastes and above 75% for the UCP concrete wastes by thermal and mechanical treatment.

Effect of TiO2 Nanotube Length on Photocatalytic Activity with Different Light Intensities: Cr(VI) Reduction and Hydrogen Production (광량 및 TiO2 나노튜브 길이별 광활성 연구: Cr(VI)환원 및 수소제조)

  • Joo, Hyun-Ku;Shim, Eun-Jung;Lee, Jae-Min;Yoon, Jae-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Anodized tubular $TiO_2$ electrodes (ATTEs) with three noticeably different lengths are prepared to determine their optimum length for the photo-driven activity in the reaction of Cr(VI) reduction and hydrogen evolution. The ATTEs with ethylene glycol have longer $TiO_2$ tubes (7-15.6 ${\mu}m$) than those with hydrfluoric acid (0.6-0.8 ${\mu}m$). These samples, which differ only in the length of the tubes, with a wall thickness of ca. 20 nm, consist mainly of an anatase crystalline phase after heat treatment at $650^{\circ}C$, since the anatase crystallites at the tube walls do not undergo transformation into rutile phase, due to the constraints imposed by the wall thickness. Among them, the medium size (ca. 8 ${\mu}m$) tubes provide the optimum conditions, irrespective of the light intensity, which is explained in terms of the correlation between the amount of photons and the adsorbed electron acceptors and their location. Photocatalytic Cr(VI) reduction leads to ca. 60% reduction of Cr(VI) even under 1 sun irradiation with the medium-sized anodized $TiO_2$ tubes, but only ca. 20% with the short- and long-sized tubes. For hydrogen evolution, tubes longer than 8 ${\mu}m$ do not exhibit better performance with any light intensity.

Preparation of sulfonated reduced graphene oxide by radiation-induced chemical reduction of sulfonated graphene oxide

  • Jung, Chang-Hee;Hong, Ji-Hyun;Jung, Jin-Mook;Hwang, In-Tae;Jung, Chan-Hee;Choi, Jae-Hak
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • We report the preparation of sulfonated reduced graphene oxide (SRGO) by the sulfonation of graphene oxide followed by radiation-induced chemical reduction. Graphene oxide prepared by the well-known modified Hummer's method was sulfonated with the aryl diazonium salt of sulfanilic acid. Sulfonated graphene oxide (SGO) dispersed in ethanol was subsequently reduced by ${\gamma}$-ray irradiation at various absorbed doses to produce SRGO. The results of optical, chemical, and thermal analyses revealed that SRGO was successfully prepared by ${\gamma}$-ray irradiation-induced chemical reduction of the SGO suspension. Moreover, the electrical conductivity of SRGO was increased up to 2.94 S/cm with an increase of the absorbed dose.

A Study on Estimating Reduction of Heating Energy and CO2 by Indoor Setting Temperature with Clo (착의량별 실내설정온도에 따른 난방에너지 및 온실가스 저감량 산정 연구)

  • Yoon, Jong-Ho;Lee, Chul-Sung;Kim, Hyo-Jung;Park, Jae-Wan;Shin, U-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.115-120
    • /
    • 2009
  • The studies for mechanical performance development have been examined to reduce energy consumption in building construction field. However, The energy consumption using in building for heating is impacted by not only system performance but also PMV particularly at temperature and clo. Most energy using in building part is mainly consumed for heating and cooling to keep comfort temperature. Heating energy consumption is bigger than cooling energy in Korea because of temperature difference in winter in comparison with summer at apartment building. This means that energy consumption can be changed by occupancy's comfort setting temperature in apartment building. This study evaluate actual comfort temperature range by clo and examined heating energy consumption by Esp-r and CO2 reduction possibility. The results show that keeping ASHRAE standards can reduce heating energy up to 23%; also, wearing underclothes with ASHRAE standard can reduce heating energy up to 47.8%. Option 4 showing Maximum CO2 emission reduction indicates that kerosene. LNG and electricity can reduce 1.5t, 1.7t, 2.46t respectively in comparison with option 2.

  • PDF

Photocatalytic Cr(VI) Reduction with a Photoanode for Hydrogen Production (수소제조용 광전극을 활용한 Cr(VI) 환원처리에 관한 연구)

  • Shim, Eun-Jung;Park, Youn-Bong;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.452-457
    • /
    • 2007
  • Titanium foil and mesh(anodized tubular $TiO_2$ electrode, ATTE) were anodized in a bath at $5^{\circ}C$ with 20V external bias applied, then annealed at different temperatures($450^{\circ}C{\sim}850^{\circ}C$) to obtain tubular $TiO_2$ on the Ti substrate. The prepared sample was used to investigate rate of hydrogen production as well as Cr(VI) reduction. The ATTEs annealed at relatively lower temperatures showed higher activity than those at relatively higher temperatures. In particular, the Cr(VI) reduction was pH-dependent. To improve photocatalytic Cr(VI) reduction with the ATTEs, two configurations, fixing foil type and rotating mesh type, were also compared. As a result, the rotating mesh type was much more effective for Cr(VI) reaction than the former due to the more efficient use of the light. In the rotating type reactor, as the rotating speed increased, the rate of the Cr(VI) reduction was getting faster.

The Experimental Research of LNT for 3L-DME Engine (3리터급 DME 엔진용 LNT 후처리 장치 연구)

  • Jang, Jinyoung;Lee, Youngjae;Pyo, Youngduk;Cho, Chongpyo;Woo, Youngmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-122
    • /
    • 2013
  • This study is aimed to develop LNT(Lean NOx Trap) aftertreatment system for DME engine. Modified DME engine, which was changed from diesel to current DME engine, is used for this research and is equipped with common rail type injector and fuel supplying system. LNT system has reductant injector. DME is also used as reduction agent. For this research, reduction agent injection time width and interval were varied. And also, swirler was used to improve homogeneity of reducing agent in exhaust pipe. The reduction rate of NOx by LNT was increased by longer injection width, short interval and swirler. The maximum diminution of NOx by LNT was over 85%.

A Study on the Energy Performance Evaluation of Building Evaporative Cooling System for Building Construction in Response to Climate Change (기후변화 대응 저에너지 건축물 조성을 위한 건축물 기화냉각시스템 에너지성능평가 연구)

  • Kwon, Ki-Uk
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The recent climate change is exacerbating the external thermal environment and increasing the amount of energy used in building. Energy Plus was used to evaluate low energy technology performance of buildings responding to climate change. The test types of basic building(control) and evaporative mist system + basic building(EMS), and the analysis results of each type are compared. Energy performance evaluation result, Cooling peak load were EMS reduction compared to control is about 9%. Annual cooling load per unit area were EMS reduction compared to control is about 17%. Annual energy use per unit area were EMS reduction compared to control is about 10%. Therefore, the effect of the evaporative cooling system is considered to be good through energy reduction technology of building, according to the amount and distance of the evaporative mist system in the future research on building energy performance evaluation should be carried out.

Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation (열병합발전을 이용한 집단에너지사업의 온실가스 감축효과)

  • Shin, Kyoung-A;Dong, Jong-In;Kang, Jae-Sung;Im, Yong-Hoon;Kim, Da-Hye
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

Application of LEAP Model to Reduce GHG Emissions from Residential Sector (LEAP 모형을 이용한 가정 부문 온실가스 저감효과 분석)

  • Jo, Mi-hyun;Park, Nyun-Bae;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 2013
  • This study uses the LEAP model that is a long-term energy analysis model to analyze reduction potential on S city residential sector energy usage for greenhouse gas emission. Energy consumption of S-si in 2009 is consumed most in residential and commerce sector by 39.1%. Also, energy and greenhouse gas emission of residential sector is expected to increase due to increase of households. Therefore, greenhouse gas reduction measures are desperately required in residential sector. For this study recognizes energy consumption of S-si residential sector and has established reduction measure of S-si residential sector greenhouse gas through literature search on domestic and foreign climate change correspondence policies. Also, construction of greenhouse gas reduction potential by reduction measures through LEAP model. There were a total of 5 reduction measures scenarios is Reference Scenario, LED Lighting, Energy Alternative, Green Life Practice, and Total Reduction Measure. As a result, greenhouse gas emission of Light Emitting Diode Lightings by 2020 was $1,181.0thousand\;tonCO_2eq$, decrease of 6.1% compared to the Reference Scenario and Greenhouse gas emission of Energy Alternative by 2020 was $1,171.6thousand\;tonCO_2eq$, decrease of 6.8% compared to the Reference Scenario. Greenhouse gas emission of Green Life Practice by 2020 was $1,128.7thousand\;tonCO_2eq$, decrease of 10.2% compared to the Reference Scenario. For Total Reduction Measures by 2020 emission was $966.9thousand\;tonCO_2eq$, decrease 23.1% compared to Reference Scenario.

Change of Main Body Temperature and Reduction of Energy Consumption in a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine

  • Lee, Choon-Gil;Woo, Kyung-Sung
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.550-556
    • /
    • 2002
  • The changes of the main body temperature of a I tube 2 chamber bent silkworm type dyeing machine and the reduction of energy consumption of the dyeing machine by the energy saving design are reported. This dyeing machine was developed for the purpose of the energy saving and high efficiency. In this study, the changes of the main body temperature of the 1 tube 2 chamber bent silkworm type dyeing machine were studied experimentally. Especially the effect of the blower motor electric current and the main body pressure at various blower frequencies were studied experimentally. In the experimental data for the changes of main body temperature, it was shown that the main body temperature increased as the blower motor electric current and the main body pressure increased.