• 제목/요약/키워드: Energy Recovery Device

검색결과 80건 처리시간 0.025초

양성자가 주입된 NPT형 전력용 다이오드의 전류-전압 특성 (Current-voltage Characteristics of Proton Irradiated NPT Type Pourer Diode)

  • 김병길;백종무;이재성;배영호
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.7-12
    • /
    • 2006
  • Local minority carrier lifetime control by means of particle irradiation is an useful technology for Production of modern silicon Power devices. Crystal damage due to ion irradiation can be easily localized by choosing appropriate irradiation energy and minority tarrier lifetime can be reduced locally only in the damaged layer. In this work, proton irradiation technology was used for improving the switching characteristics of a un diode. The irradiation was carried out with various energy and dose condition. The device was characterized by current-voltage, capacitance-voltage, and reverse recovery time measurements. Forward voltage drop was increased to 1.1 V at forward current of 5 A, which was $120\%$ of its original device. Reverse leakage current was 64 nA at reverse voltage of 100 V, and reverse breakdown voltage was 670 V which was the same voltage as original device without irradiation. The reverse recovery time of device was reduced to about $20\%$ compared to that of original device without irradiation.

Enhancement of the energy efficiency of hydrogen SOFC system by integrated cold energy utilization and waste heat recovery method

  • Nguyen Quoc Huy;Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.160-161
    • /
    • 2022
  • Hydrogen is bridge fuel with high energy content and environmentally friendly to satisfy the stringent IMO regulation relating to greenhouse gas (GHG) emissions. There is growing interest in hydrogen in numerous nations and regions illustrated by an extensive range of research and development in technology. Regarding maritime applications, researchers have recognized the utilization of hydrogen as a fuel for fuel cells, a device that converts the chemical energy of the fuel to electrical energy. Solid oxide fuel cell (SOFC), with high working temperature, is easy to combine with the waste heat recovery cycles/devices to increase output power and thermodynamic performances as well. Furthermore, the cold energy from liquid hydrogen supplied to SOFC can also be used to generate more power. In this study, we proposed a SOFC integrated system with the idea of combining the waste heat recovery from the SOFC exhaust stream and cold energy utilization from LH2. The designation is aimed to target small-scale vessel which uses electric propulsion for short distances voyage.

  • PDF

고전압 MLCC 시험을 위한 에너지 회수 회로 제안 (Proposal of the Energy Recovery Circuit for Testing High-Voltage MLCC)

  • 공소정;권재현;홍대영;하민우;이준영
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.214-220
    • /
    • 2022
  • This paper proposes a test device designed for developing a high-voltage multilayer ceramic capacitor (MLCC). The proposed topology consists of an energy recovery circuit for charging/discharging capacitor, a flyback converter, and a boost converter for supplying power and a bias voltage application to the energy recovery circuit. The energy recovery circuit designed with a half-bridge converter has auxiliary switches operating before the main switches to prevent excessive current from flowing to the main switches. A prototype has been designed to verify the reliability of target capacitors following the voltage fluctuation with a frequency range below 65 kHz. To conduct high root mean square (RMS) current to the capacitor as a load, the MLCC test was conducted after the topology verification was completed through the film capacitor as a load. Through the agreement between the RMS current formula proposed in this paper and the MLCC test results, the possibility of its use was demonstrated for high-voltage MLCC development in the future.

Dual-zone reactor와 CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산 (Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle Using Dual-zone Reactor and CeO2/ZrO2 Foam Device)

  • 조지현;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제37권5호
    • /
    • pp.27-37
    • /
    • 2017
  • In this study, an artificial solar simulator composed of a 2.5 kW Xe-Arc lamp and mirror reflector was used to carry out the solar thermal two step thermochemical water decomposition cycle which can produce high efficiency continuous hydrogen production. Through various operating conditions, the change of hydrogen production due to the possibility of a dual-zone reactor and heat recovery were experimentally analyzed. Based on the reaction temperature of Thermal-Reduction step and Water-Decomposition step at $1,400^{\circ}C$ and $1,000^{\circ}C$ respectively, the hydrogen production decreased by 23.2% under the power off condition, and as a result of experiments using heat recovery technology, the hydrogen production increased by 33.8%. Therefore, when a thermochemical two-step water decomposition cycle is conducted using a dual-zone reactor with heat recovery, it is expected that the cycle can be operated twice over a certain period of time and the hydrogen production amount is increased by at least 53.5% compared to a single reactor.

SMES용 kA급 초전도도체의 운전전류 특성 (Operating Current Characteristics of a kA Class Conductor for a SMES device)

  • 류경우;최병주;김해종;성기철
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2003
  • We have developed a small-sized superconducting magnetic energy storage (SMES) device, which provides electric power with high quality to sensitive electric loads. In large magnets such as the SMES magnets the stability, which is determined by several factors, e.g. conductors cooling condition and operating current, magnets winding structure, is a crucial problem. The effect of the cooling condition, the copper ratio, and the conductor's size upon the recovery currents was investigated experimentally. The results indicate that the recovery current characteristics of the strands vary considerably according to their insulation method. In the fully insulated strands with a low copper ratio, the recovery current densities range from 10 to 20 % of their engineering critical current densities. The recovery current density of the 30-conductor with a cooling channel is about a factor of 1.8 higher than that without a cooling channel.

  • PDF

Cost-effective Single Board PDP Sustaining Driver with Dual Resonant Method

  • Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.93-99
    • /
    • 2009
  • A new plasma display panel sustaining driver using single side sustaining technique with a dual resonant method is proposed in this paper. Since this circuit enables to keep device voltage stress same as the prior circuit, it can be a low cost circuit compared to a conventional driver. To integrate the sustaining function into one side with a single power source in the driver, a charge pump method is adopted to make negative sustaining voltage and to achieve dual resonant energy recovery on the sustaining modes.

온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성 (Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses)

  • 최병철;이정현
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.

역삼투막 해수담수화 공정에서 에너지 회수장치의 운영인자 비교분석을 통한 에너지 효율 최적화 연구 (Optimization of energy efficiency through comparative analysis of factors affecting the operation with energy recovery devices on SWRO desalination process)

  • 김푸름;김형수;박준영;김태우;김민진;박기태;김지훈
    • 상하수도학회지
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, interest in the development of alternative water resources has been increasing rapidly due to environmental pollution and depletion of water resources. In particular, seawater desalination has been attracting the most attention as alternative water resources. As seawater desalination consumes a large amount of energy due to high operating pressure, many researches have been conducted to improve energy efficiency such as energy recovery device (ERD). Consequently, this study aims to compare the energy efficiency of RO process according to ERD of isobaric type which is applied in scientific control pilot plant process of each $100m^3/day$ scale based on actual RO product water. As a result, it was confirmed that efficiency, mixing rate, and permeate conductivity were different depending on the size of the apparatus even though the same principle of the ERD was applied. It is believed that this is caused by the difference in cross-sectional area of the contacted portion for pressure transfer inside the ERD. Therefore, further study is needed to confirm the optimum conditions what is applicable to the actual process considering the correlation with other factors as well as the factors obtained from the previous experiments.

열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구 (A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery)

  • 조지현;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제37권2호
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.