• Title/Summary/Keyword: Energy Price

Search Result 929, Processing Time 0.029 seconds

Economic Evaluations of Direct Coal Liquefaction Processes (직접석탄액화 공정의 경제성 평가)

  • Park, Joo-Won;Kweon, Yeong-Jin;Kim, Hak-Joo;Jung, Heon;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.127-132
    • /
    • 2009
  • This report examines the economic feasibility of a commercial 50,000 barrel per day direct coal liquefaction(DCL) facility to produce commercial-grade diesel and naphtha liquids from medium-sulfur bituminous coal. The scope of the study includes capital and operating cost estimates, sensitivity analysis and a comparative financial analysis. Based on plant capacity of 50,000BPD, employing Illinois #6 bituminous coal as feed coal the total capital cost appeared $3,994,858,000. Also, the internal rate of return of DCL appeared 6.60% on the base condition. In this case, coal price and sale price of products were the most influence factors. And DCL's payback period demanded a long time(12.3 years), because of high coal price at the present time. According to sensitivity analyses, the important factors on DCL processes were product sale price, feed coal price and the capital cost in order.

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.

Potential of Agricultural Residues for Small Biomass Power Generation in Thailand

  • Panklib, Thakrit
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The demand for energy in Thailand has been continually increasing as the economic and social country grows. Approximately 60% of Thailand's primary energy is imported, mostly petroleum products. In 2008 Thailand's total energy consumption was 80,971 ktoe and the net price of energy imported was up to 1,161 billion Baht which is equivalent to 12.8% of GDP at the current price. The energy consumption or energy demand has been growing at an annual compounded growth rate of 6.42% and the peak electric power demand and electricity consumption was recorded at 22,568 MW and 148,264 GWh and grew at a rate of 7.0% and 7.5% per annum during the period from 1989 to 2008. The gross agriculture production in 2008 was recorded at 135.4 Mt which represents agriculture residue for energy at 65.73 Mt, which is equivalent to energy potential of about 561.64 PJ or 13,292 ktoe an increase in average of 5.59% and 5.44% per year respectively. The agricultural residues can converted to 15,600 GWh/year or 1,780 MW of power capacity. So, if government sector plan to install small biomass gasification for electricity generation 200 kW for Community. The residue agricultural is available for 8,900 plants nationwide. The small biomass power generation for electricity generation not only to reduce the energy imports, it also makes the job and income for people in rural areas as well. This paper's aim is to report the energy situation in Thailand and has studied 5 main agricultural products with high residue energy potential namely sugarcane, paddy, oil palm, cassava, and maize appropriate for small electricity production. These agricultural products can be found planted in many rural areas throughout Thailand. Finally, discuss the situation, methods and policies which the government uses to promote small private power producers supplying electricity into the grid.

Demand Shifting or Ancillary Service?: Optimal Allocation of Storage Resource to Maximize the Efficiency of Power Supply (Demand Shifting or Ancillary Service?: 효율적 재생발전 수용을 위한 에너지저장장치 최적 자원 분배 연구)

  • Wooyoung Jeon
    • Environmental and Resource Economics Review
    • /
    • v.33 no.2
    • /
    • pp.113-133
    • /
    • 2024
  • Variable renewable energy (VRE) such as solar and wind power is the main sources of achieving carbon net zero, but it undermines the stability of power supply due to high variability and uncertainty. Energy storage system (ESS) can not only reduce the curtailment of VRE by load shifting but also contribute to stable power system operation by providing ancillary services. This study analyzes how the allocation of ESS resources between load shifting and ancillary service can contribute to maximizing the efficiency of power supply in a situation where the problems caused by VRE are becoming more and more serious. A stochastic power system optimization model that can realistically simulate the variability and uncertainty of VRE was applied. The analysis time point was set to 2023 and 2036, and the optimal resource allocation strategy and benefits of ESS by varying VRE penetration levels were analyzed. The analysis results can be largely summarized into the following three. First, ESS provides excellent functions for both load shifting and ancillary service, and it was confirmed that the higher the reserve price, the more limited the load shifting and focused on providing reserve. Second, the curtailment of VRE can be a effective substitute for the required reserve, and the higher the reserve price level, the higher the curtailment of VRE and the lower the required amount of reserve. Third, if a reasonable reserve offer price reflecting the opportunity cost is applied, ESS can secure economic feasibility in the near future, and the higher the proportion of VRE, the greater the economic feasibility of ESS. This study suggests that cost-effective low-carbon transition in the power system is possible when the price signal is correctly designed so that power supply resources can be efficiently utilized.

The Optimal Operation of Distributed Generation Possessed by Community Energy System Considering Low-Carbon Paradigm (저탄소 패러다임에 따른 구역전기사업자의 분산전원 최적 운영에 관한 연구)

  • Kim, Sung-Yul;Shim, Hun;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1504-1511
    • /
    • 2009
  • By development of renewable energies and high-efficient facilities and deregulated electricity market, the operation cost of distributed generation(DG) becomes more competitive. The amount of distributed resource is considerably increasing in the distribution network consequently. Also, international environmental regulations of the leaking carbon become effective to keep pace with the global efforts for low-carbon paradigm. It contributes to spread out the business of DG. Therefore, the operator of DG is able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, community energy system(CES) having DGs is recently a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to the transmission service charges and etc. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize the profit. If there is no regulation for carbon emission(CE), the generators which get higher production than generation cost will hold a prominent position in a competitive price. However, considering the international environment regulation, CE newly will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper will introduce the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES and Particle Swarm Optimization (PSO) will be used to solve this problem. The optimal operation of DG represented in this paper is to be resource to CES and system operator for determining the decision making criteria.

Assessment of the Sugar Content According to Beverage Types Sold in Korea (국내에서 판매되는 음료 유형별 당류 함량 평가)

  • Kim, So-Yun;Choi, Mi-Kyeong
    • Journal of the Korean Dietetic Association
    • /
    • v.28 no.3
    • /
    • pp.195-204
    • /
    • 2022
  • The purpose of this study was to provide nutritional information for selecting beverages with low sugar contents. The nutritional data, including the sugar contents of 925 beverages, were collected from the nutrition labels through the official websites of manufacturers and analyzed according to the beverage types. The average price and volume of the beverage products were 1,556.6 won and 224.8 mL, respectively. The volume per price was the highest for carbonated beverages at 351.6 mL/1,000 won. The sugar content was high in the order of carbonated beverages (22.6 g), fruit & vegetable beverages (21.0 g), and mixed beverages (19.1 g). The sugar content per 100 mL was high in the order of fruit juice (10.6 g), fruit and vegetable beverages (9.2 g), ginseng and red ginseng beverages (8.5 g), and mixed beverages (8.3 g). The content of the product per 1,000 won was high in the order of carbonated beverages (23.3 g), fruit and vegetable beverages (23.2 g), and mixed beverages (20.0 g). The number of products with energy from a sugar content of 5% or more compared to the energy reference value was significantly higher in the carbonated beverages (52.2%), fruit and vegetable beverages (33.0%), and mixed beverages (26.5%) than other beverages. The sugar energy ratio of beverage products was highest in the carbonated beverages at 88.9%, followed by fruit and vegetable beverages (87.0%), fruit juices (84.3%), and mixed beverages (76.8%). Overall, beverages with high sugar contents per product, volume, and price were carbonated beverages, fruit and vegetable beverages, and mixed beverages.

Generator Maintenance Scheduling for Bidding Strategies in Competitive Electricity Market (경쟁 전력시장에서 발전기 유지보수계획을 고려한 입찰전략수립)

  • 고용준;신동준;김진오;이효상
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 2002
  • The vertically integrated power industry was divided into six generation companies and one market operator, where electricity trading was launched at power exchange. In this environment, the profits of each generation companies are guaranteed according to utilizing strategies of their own generation equipments. This paper presents on generator maintenance scheduling and efficient bidding strategies for generation equipments through the calculation of the contract and the application of each generator cost function based on the past demand forecasting error and market operating data.

A Study on EVs Smart Charging Scheme Considering Time-of-Use Price and Actual Data (Time-of-Use 가격 및 실제 데이터를 고려한 전기 자동차 스마트 충전기법에 대한 연구)

  • Kim, Junhyeok;Kim, Chulhwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1793-1799
    • /
    • 2016
  • As one of the main trends in global industries is eco-friendly energy, the interest on Electric Vehicle(EV) has been increased. However, if large amount of EVs start to charging, it could cause rapid increase in demand power of the power system. To guarantee stable operation of the power system, those unpredictable power consume should be mitigated. In this paper, therefore, we propose a practical smart EVs charging scheme to prevent the rapid increase of the demand power and also provide load flattening function. For that we considered Time-of-Use(ToU) price and actual data such as driving pattern and parameters of distribution system. Simulation results show that the proposed method provides proper load flattening function while preventing the rapid increase of the demand power of the power system.

Bid-based Direct Load Control Framework Under Electricity Markets (전력시장 환경하에 입찰기반의 직접부하제어 운영방안)

  • Lee, Ho-Chul;Song, Sung-Hwan;Yoon, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.455-461
    • /
    • 2009
  • This paper proposes Direct Load Control(DLC) operation scheme using a bidding system and the methodology to value proper quantity decided by the DLC program, which is a kind of resources for stabilization of electricity market price during peak times by managing consumer electricity demand. Since DLC program in Korea is based on the contract with the customers participating in this program, it is difficult to anticipate voluntary participation. That is, incentive for participants in DLC program is insufficient. To cope with this point, it is necessary to develop a new market mechanism and market compatible operation scheme for DLC programs. DLC market mechanism is deemed to be equipped with iterative bidding system, independent operation from energy market, and interactive with bidding information on energy market. With this market mechanism, it is important to find the optimal operation point of DLC allowing for the factors of stabilizing the electricity market price and compensating DLC implementation. This paper focuses on the mathematical approaches for the bid-based DLC operation scheme and examines several scenarios for the following technical justifications: 1) stabilization of electricity market price during peak times, 2) elasticity of demand.

Economic Feasibility Analysis of an Overseas Green Hydrogen Supply Chain (해외 그린수소 공급망 경제성 분석)

  • HAEJUNG HWANG;YESEUL LEE;NAKHYUN KWON;SUHYUN KIM;YOUNGDON YOO;HYEJIN LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.616-622
    • /
    • 2022
  • At the present time, interest in hydrogen is increasingly growing worldwide to tackle climate change. Korea also takes an action by announcing the first hydrogen economy implementation basic plan with the import targets of 22.9 million tons of hydrogen from oversea in 2050. To achieve this plan, it is very essential to establish an overseas hydrogen supply chain. In this paper, the study estimates the import price for hydrogen into basic scenario and comprehensive scenario, and also analyses economic feasibility considering price of the each technology.