• 제목/요약/키워드: Energy Potential Function

검색결과 363건 처리시간 0.026초

Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM

  • Isonguyo, Cecilia N.;Okon, Ituen B.;Ikot, Akpan N.;Hassanabadi, Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3443-3446
    • /
    • 2014
  • We present the solution of Klein Gordon equation with new generalized Morse-like potential using SUSYQM formalism. We obtained approximately the energy eigenvalues and the corresponding wave function in a closed form for any arbitrary l state. We computed the numerical results for some selected diatomic molecules.

정하중을 받는 승용차 타이어의 진동특성에 관한 연구 (A study on vibration characteristics of passenger car tire under the static load)

  • 문일동;이태근;홍동표;김병삼
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.14-22
    • /
    • 1995
  • We treat the vibrations of circular beam and make use of the method employed by J.T.Tielking, which is based on the principle of Hamilton. The Hamilton's principle requires the determinations of the potential and the kinetic energy of the model as well as done by internal pressure forces. Thje potential energy is composed of a part due to elastic deformations of the beam and a part due to radial and tangential displacements of the tread band with respect to the wheel rim. The equations of motion for such a model are derived by reference to conventional energy method. The accuracy of the expressions is demonstrated by comparison of calculated and experimental natural frequencies for circular beam. The circular beam experiences a harmonic, radial excitat- ion acting at a fixed point on the beam. Modal parameters varying the inflation pressure and load are determined experimentally by using the transfer function method.

  • PDF

정전 탐침법과 유체 시뮬레이션을 이용한 유도결합 Ar 플라즈마의 특성 연구 (Analysis of Inductively Coupled Plasma using Electrostatic Probe and Fluid Simulation)

  • 차주홍;이호준
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1211-1217
    • /
    • 2016
  • Discharge characteristics of inductively coupled plasma were investigated by using electrostatic probe and fluid simulation. The Inductively Coupled Plasma source driven by 13.56 Mhz was prepared. The signal attenuation ratios of the electrostatic probe at first and second harmonic frequency was tuned in 13.56Mhz and 27.12Mhz respectively. Electron temperature, electron density, plasma potential, electron energy distribution function and electron energy probability function were investigated by using the electrostatic probe. Experiment results were compared with the fluid simulation results. Ar plasma fluid simulations including Navier-Stokes equations were calculated under the same experiment conditions, and the dependencies of plasma parameters on process parameters were well agreed with simulation results. Because of the reason that the more collision happens in high pressure condition, plasma potential and electron temperature got lower as the pressure was higher and the input power was higher, but Electron density was higher under the same condition. Due to the same reason, the electron energy distribution was widening as the pressure was lower. And the electron density was higher, as close to the gas inlet place. It was found that gas flow field significantly affect to spatial distribution of electron density and temperature.

Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.127-143
    • /
    • 2012
  • The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.

이온유체방정식을 이용한 Plasma Sheath 시변 해석 (Analysis of Time-Dependent Behavior of Plasma Sheath using Ion Fluid Model)

  • 이호준;이해준
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2173-2178
    • /
    • 2007
  • Dynamics of plasma sheath was analyzed using simple ion fluid model with poison equation. Incident ion current, energy, potential distribution and space charge density profile were calculated as a function of time. The effects of initial floating sheath on the evolution of biased sheath were compared with ideal matrix sheath. The effects of finite rising time of pulse bias voltage on the ion current and energy was studied. The influence of surface charging on the evolution of sheath was also investigated

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.

MCRO-ECP: Mutation Chemical Reaction Optimization based Energy Efficient Clustering Protocol for Wireless Sensor Networks

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3494-3510
    • /
    • 2019
  • Wireless sensor networks encounter energy saving as a major issue as the sensor nodes having no rechargeable batteries and also the resources are limited. Clustering of sensors play a pivotal role in energy saving of the deployed sensor nodes. However, in the cluster based wireless sensor network, the cluster heads tend to consume more energy for additional functions such as reception of data, aggregation and transmission of the received data to the base station. So, careful selection of cluster head and formation of cluster plays vital role in energy conservation and enhancement of lifetime of the wireless sensor networks. This study proposes a new mutation chemical reaction optimization (MCRO) which is an algorithm based energy efficient clustering protocol termed as MCRO-ECP, for wireless sensor networks. The proposed protocol is extensively developed with effective methods such as potential energy function and molecular structure encoding for cluster head selection and cluster formation. While developing potential functions for energy conservation, the following parameters are taken into account: neighbor node distance, base station distance, ratio of energy, intra-cluster distance, and CH node degree to make the MCRO-ECP protocol to be potential energy conserver. The proposed protocol is studied extensively and tested elaborately on NS2.35 Simulator under various senarios like varying the number of sensor nodes and CHs. A comparative study between the simulation results derived from the proposed MCRO-ECP protocol and the results of the already existing protocol, shows that MCRO-ECP protocol produces significantly better results in energy conservation, increase network life time, packets received by the BS and the convergence rate.

Mechanics of lipid membranes subjected to boundary excitations and an elliptic substrate interactions

  • Kim, Chun Il
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.141-155
    • /
    • 2017
  • We present relatively simple derivations of the Helfrich energy potential that has been widely adopted in the analysis of lipid membranes without detailed explanations. Through the energy variation methods (within the limit of Helfrich energy potential), we obtained series of analytical solutions in the case when the lipid membranes are excited through their edges. These affordable solutions can be readily applied in the related membrane experiments. In particular, it is shown that, in case of an elliptic cross section of a rigid substrate differing slightly from a circle and subjected to the incremental deformations, exact analytical expressions describing deformed configurations of lipid membranes can be obtained without the extensive use of Mathieu's function.

곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석 (Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature)

  • 서광진;민병철;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

경락상태진단을 위한 경락의 전위변화 분석 (Analysis of Meridians Potential Change for Meridians State Diagnosis)

  • 이용흠;고수복;정석준;정동명
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권5호
    • /
    • pp.405-412
    • /
    • 2002
  • 경락에서의 침구효과 원리는 침 자극이 인체의 저하된 기능상태로부터 각성상태, 응급상태, 국부적 쇼크 상태로 만들어줌으로써 인체의 전반적 생리기능이 새로운 평형을 이룰 수 있도록 하는데 있다. 그러나, 서양의학에서는 침구치료효과를 시술자의 생체에너지(기) 전달에 의한 효과보다는 단순한 침자극에 의한 신경-내분비-면역 계통의 작용과 반응으로 간주하고있다. 따라서 침구치료의 효과가 침 자극에 의한 경락의 작용임을 확인하고, 시술방법에 따른 전위 변화를 분석하기 위해서 경혈과 비경혈, 절연자침과 비절연자침, 보법과 사법으로 자극했을 때의 전위변화를 측정한 결과, 각각 다른 반응이 나타났다. 이는 동일 경락에서 침구의 작용효과는 단순한 침 자극에 의한 효과뿐만 아니라, 시술자의 생체에너지 전달에 의해 복합적으로 반응할 수 있음을 의미한다. 임상실험을 분석한 결과, 시술방법에 따른 경락에서의 전위 변화는 해당 경락의 허실과 해당장기의 건강상태에 따라 다르게 나타나고 있어서, 경락의 허실상태를 진단할 수 있는 진단 파라메터로서의 유의성을 확인하였다.