• Title/Summary/Keyword: Energy Performance data

Search Result 2,461, Processing Time 0.033 seconds

A STUDY ON THE CONSTRUCTION OF BIM DATA INTEROPERABILITY FOR ENERGY PERFORMANCE ASSESSMENT BASED ON BIM

  • Jungsik Choi;Hyunjae Yoo;Inhan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.267-273
    • /
    • 2013
  • Early design phase energy modeling is used to provide the design team with first order of magnitude feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest construction of BIM data interoperability for energy performance assessment based on BIM. To archive this purpose, the authors have investigated advantage of BIM-based energy performance assessment through comparison with traditional energy performance assessment and suggested requirement for construction of open BIM environment such as BIM data creation, BIM data software practical use, BIM data application and verification. In addition, the authors have suggested BIM data interoperability and BIM energy property mapping method focused on materials.

  • PDF

Photovoltaic System Energy Performance Analysis Using Meteorological Monitoring Data (기상 환경 모니터링 데이터를 이용한 태양광발전시스템 발전량 성능 분석)

  • Kwon, Oh-Hyun;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.11-31
    • /
    • 2018
  • Nowadays, domestic photovoltaic system market has been expanded and the governmental dissemination policy has been continued. There is only PV system output performance analysis which is called Performance Ratio(PR) analysis. However, there exists many parameters that can affect PV system output. This papers shows the PV system energy performance analysis using meteorological monitoring data. The meteorological monitoring system was installed in the H university and we analyzed the PV system which installed in the H university. We also investigated other three PV systems which located less than 3 kilometers from H university. We evaluated total 4 PV systems through the field survey data, design drawing data and power generation data. Finally, we compared the actual measuring data with the simulation data using PVSYST software.

TMY2 Weather data for Korea (TMY2 방식에 의한 국내 기상자료 작성 연구)

  • Shin, Kee-Shik;Yoon, Chang-Ryuel;Park, Sang-Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.243-246
    • /
    • 2009
  • To evaluate the building energy performance, many building simulation programs are used and its capabilities are developed. Despite of its increased capabilities the weather data used In the Building Energy performance evaluation, are still using the same limited set of data. This often forces users to find or calculate weather data such as illuminance, solar radiation, and ground temperature from other sources to calculate it. Also, proper selection of a right weather data set has been considered as one of important factors for a successful building energy simulation. In this paper, we describe TMY2 data, a generalized weather data format developed for use, and applied to Seoul region and examine the differences comparing to existing weather data. A set of 23 years raw weather data base has been developed to provide the weather data file for building energy analysis in Seoul.

  • PDF

The Development of the Monitoring System for Power performance using the Lab View (LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Ju, Young-Chul;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

Comparison of the Performance of Clustering Analysis using Data Reduction Techniques to Identify Energy Use Patterns

  • Song, Kwonsik;Park, Moonseo;Lee, Hyun-Soo;Ahn, Joseph
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.559-563
    • /
    • 2015
  • Identification of energy use patterns in buildings has a great opportunity for energy saving. To find what energy use patterns exist, clustering analysis has been commonly used such as K-means and hierarchical clustering method. In case of high dimensional data such as energy use time-series, data reduction should be considered to avoid the curse of dimensionality. Principle Component Analysis, Autocorrelation Function, Discrete Fourier Transform and Discrete Wavelet Transform have been widely used to map the original data into the lower dimensional spaces. However, there still remains an ongoing issue since the performance of clustering analysis is dependent on data type, purpose and application. Therefore, we need to understand which data reduction techniques are suitable for energy use management. This research aims find the best clustering method using energy use data obtained from Seoul National University campus. The results of this research show that most experiments with data reduction techniques have a better performance. Also, the results obtained helps facility managers optimally control energy systems such as HVAC to reduce energy use in buildings.

  • PDF

Alternative Selection Method for Energy Efficiency Improvement of Old Detached House (노후 단독주택의 난방에너지 효율 개선을 위한 대안 선정 방법에 관한 연구)

  • Hwang, Seok-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.45-55
    • /
    • 2019
  • More than 76% of the detached houses in Korea are over 20 years old. These old detached houses have poor energy efficiency. According to the 2017 Housing Census (Statistics Korea), more than 50% of low-income families live in detached houses. Therefore, the improvement of energy efficiency in old detached houses is needed from the viewpoint of energy welfare. The general method of building energy modelling for the verification of energy efficiency is based on the construction year data of "Building Design Criteria for Energy Saving" due to the cost and time involved in collecting the thermal performance data of buildings. There is poor accuracy with the deterioration of long-term aging of building materials. Also, the selection of alternatives for energy performance improvement is based on the items to be applied, not a performance improvement goal. It is difficult to calculate energy performance that reflects variations in various parameters with dynamic energy simulations. In this study, the influence of long-term aging is used to accurately predict the energy performance of old detached houses. The building energy modelling method is called ENERGY#, which is a static analysis method based on ISO13790. Energy performance is evaluated by a combination of input variables including building orientation, insulation of walls and roof, thermal performance of windows and window/wall ratio, and infiltration rate. Finally, this study provides a way to determine alternatives that meet energy performance improvement goals.

The Development of the Monitoring System for Wind resource measurement in onshore wind energy experimental research complex (육상풍력실증연구단지 풍황계측 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Lee, Youn-Seop
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.277-280
    • /
    • 2009
  • Wind monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind energy generator in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house and of utilizing the measured data for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind energy generator during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized, This paper is intended to explain the developed wind data monitoring system.

  • PDF

A Study on the Institutionalization of Energy Efficient Operation and Maintenance Program for Existing Buildings (기존 건축물의 운영단계 에너지효율 개선을 위한 관리 및 제도화 방안 연구)

  • Cho, Jinkyun;Lee, Youngjae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.33-42
    • /
    • 2020
  • Operational energy is the energy that is used during the occupancy stage of building life cycle. It is associated with relatively longer proportion of infrastructure's service life and can constitute 80-90% of the total energy. Assessing the energy use in buildings is essential since they are significant contributors to energy demand. In this regard, energy performance of buildings has become the focus of many regulations. This paper aimed to review the regulations about the energy performance of buildings during their operational stage in Korea. For energy efficient operation program for existing buildings, governments should implement policies and support voluntary programs that rely on collecting and managing building performance data and using this data to inform public and private-sector operation and maintenance strategies. Implementing these policies and programs requires tools and processes for collecting, curating, managing, analyzing, and publishing this data. Energy assessment tool, that is a data resource management tool that enables to assess energy use across the entire portfolio of buildings, is also required.

Analysis of Energy Performance and Green Strategies in the Foreign High-Performance Buildings

  • Park, Doo-Yong;Kim, Chul-Ho;Lee, Seung-Eon;Yu, Ki-Hyung;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • Purpose: In this study, we analyzed the energy performance levels and high-performance technology trends through the case studies of foreign high-performance buildings. Method: Buildings built within 10 years were selected for the analysis of recent trends. we analyzed the buildings of U.S.A, Germany and Japan using LEED certified buildings, Passive House certified buildings and CASBEE certified buildings database for the case study of foreign high-performance buildings. A total of 20 high-performance buildings including 14 cases in U.S.A, 4 cases in Germany and 4 cases in Japan were selected. Annual energy consumption levels for 20 high-performance buildings were collected with the actual energy consumption data or data from simulation programs officially recognized by DOE. Annual energy consumption were compared with the energy performance standard of the office buildings in the CBECS database, ASHRAE Standard 90.1-2004 and Building Energy Efficiency Rating System in Korea. Result: The order of the green strategies applied in the main categories are Renewable Energy(63%), Indoor Environment Control(51%), Envelope Improvement(44%) and HVAC System & Control(28%). Specified strategies most widely used in the sub-categories are high-performance Insulation (70%), High Efficiency Heating, Cooling Source Equipment(85%), Photovoltaic&Solar Thermal(80%) and Daylighting(80%).

ISO performance data based commissioning technique for GSHP system (ISO 성능데이터를 이용한 지열히트펌프 시스템의 성능 확인 커미셔닝 기술)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Chang, Ki-Chang;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. However, the system reliability has been key issues and barriers to insure a better system performance as designed originally in ISO (international standard organization) standard. This paper introduces a systematic method to verify its intended design target so called as ISO performance data based commissioning technology for a water to air GSHP system. The commissioning technology starts from are to the international standard ISO performance data of a GSHP model and to compare its installed operation data and to calibrate and tune to the target optimum operation parameters. Results indicated that cooling capacity could be raised up to 76.6% from 46.6% from this proposed commissioning technology.

  • PDF