• Title/Summary/Keyword: Energy Performance Analysis

Search Result 4,295, Processing Time 0.031 seconds

SNP Discovery in the Leptin Promoter Gene and Association with Meat Quality and Carcass Traits in Korean Cattle

  • Chung, E.R.;Shin, S.C.;Shin, K.H.;Chung, K.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1689-1695
    • /
    • 2008
  • Leptin, the hormone product of the obese gene, is secreted predominately from white adipose tissue and regulates feed intake, energy metabolism and body composition. It has been considered a candidate gene for performance, carcass and meat quality traits in beef cattle. The objective of this study was to identify SNPs in the promoter region of the leptin gene and to evaluate the possible association of the SNP genotypes with carcass and meat quality traits in Korean cattle. We identified a total of 25 SNPs in the promoter region (1,208-3,049 bp upstream from the transcription start site) of the leptin gene, eleven (g.1508C>G, g.1540G>A, g.1545G>A, g.1551C>T, g.1746T>G, g.1798ins(G), g.1932del(T), g.1933del(T), g.1934del(T), g.1993C>T and g.2033C>T) of which have not been reported previously. Their sequences were deposited in GenBank database with accession number DQ202319. Genotyping of the SNPs located at positions g.2418C>G and g.2423G>A within the promoter region was performed by direct sequencing and PCR-SSCP method to investigate the effects of SNP genotypes on carcass and meat quality traits in Korean cattle. The SNP and SSCP genotypes from the two mutations of the leptin promoter were shown to be associated with the BF trait. The average BF value of animals with heterozygous SNP genotype was significantly greater than that of animals with the homozygous SNP genotypes for the g.2418C>G and g.2423G>A SNPs (p<0.05). Analysis of the combined genotype effect in both SNPs showed that animals with the AC SSCP genotype had higher BF value than animals with BB or AA SSCP genotypes (p<0.05). These results suggest that SNP of the leptin promoter region may be useful markers for selection of economic traits in Korean cattle.

A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method (유중건조를 이용한 천안시 열건조물의 고형연료화 공정 연구)

  • Park, So-yeon;Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.660-667
    • /
    • 2018
  • This study examined the optimal manufacturing conditions of RDF using heat-dried sludge from sewage treatment plant in Cheonan with the oil-drying method. The amounts of oil evaporation and oil drying of the heat-dried sludge were measured at different temperatures to evaluate the value of the product. The performance of the product was then measured using a calorimeter and TGA. In addition, the concentration of odor, NH3, H2S, and TVOC during drying was determined using a portable odor-meter. Ingredient analysis was performed by EDS. Considering mass-production, the oil to heat-dried sludge weight ratio was fixed to 4:1. At $130^{\circ}C$, only physical mixing occurred after the instantaneous drying of internal water. Considering the eco-friendly aspects, there was no significant difference in the drying efficiency between $160^{\circ}C$ and $190^{\circ}C$. Therefore, the optimal conditions were a drying temperature of $160^{\circ}C$ within 5 minutes. Finally, the RDF manufactured in this study and fuel used in the thermal power plants were compared. The calorific value was 4,449kcal/kg, the water content was 2% and the ash content was 34%, which is higher than the fuel of thermal power plants. Therefore, it is believed that coal energy as well as wood pellets can be replaced.

Numerical Study on Operating Factors Affecting Performance of Surfactant-Enhanced Aquifer Remediation Process (계면활성제 증진 대수층 복원 프로세스에 영향을 미치는 운영 인자들에 대한 수치 연구)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.690-698
    • /
    • 2010
  • Contamination of groundwater resources by organic chemicals has become an issue of increasing environmental concern. Surfactant-enhanced aquifer remediation (SEAR) is widely recognized as one of the most promising techniques to remediate organic contaminations in-situ. Solutions of surfactant or surfactant with polymer are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In the design of surfactant-based technologies for remediation of organic contaminated aquifers, it is very important to have a considerable analysis using extensive numerical simulations prior to full-scale implementation. This study investigated the formation and flow of microemulsions during SEAR of organic-contaminated aquifer using the finite difference model UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model. The remediation process variables considered in this study were the sequence of injection fluids, the injection and extraction rate, the concentrations of polymer in surfactant slug and chase water, and the duration of surfactant injection. For each variable, temporal changes in injection and production wells and spatial distributions of relative saturations in the organic phase were compared. Cleanup time and cumulative organic recovery were also quantified. The study would provide useful information to design strategies for the remediation of nonaqueous phase liquid-contaminated aquifers.

Development of A Component and Advanced Model for The Smart PR-CFT Connection Structure (스마트 반강접 (PR) 콘크리트 충전 강재 합성 (CFT) 접합 구조물에 대한 해석모델의 개발)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study investigates the performance of composite (steel-concrete) frame structures through numerical experiments on individual connections. The innovative aspects of this research are in the use of connections between steel beams and concrete-filled tube (CFT)columns that utilize a combination of low-carbon steel and shape memory alloy (SMA) components. In these new connections, the intent is to utilize the recentering provided by super-elastic shape memory alloy tension bars to reduce building damage and residual drift after a major earthquake. The low-carbon steel components provide excellent energy dissipation. The analysis and design of these structures is complicated because the connections cannot be modeled as being simply pins or full fixity ones they are partial restraint (PR). A refined finite element (FE) model with sophisticated three dimensional (3D) solid elements was developed to conduct numerical experiments on PR-CFT joints to obtain the global behavior of the connection. Based on behavioral information obtained from these FE tests, simplified connection models were formulated by using joint elements with spring components. The behavior of entire frames under cyclic loads was conducted and compared with the monotonic behavior obtained from the 3D FE simulations. Good agreement was found between the simple and sophisticated models, verifying the robustness of the approach.

Electrochemical Study of Nanoparticle Li4Ti5O12 as Negative Electrode Material for Lithium Secondary Battery (리튬이차전지 음극재용 나노입자 Li4Ti5O12의 전기화학적 연구)

  • Oh Mi-Hyun;Kim Han-Joo;Kim Young-Jae;Son Won-Keun;Lim Kee-Joe;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Lithium titanium oxide $(Li_4Ti_5O_{12})$ with spinel-framework structures as anode material for lithium-ion battery was prepared by sol-gel and high energy ball milling (HEBH) method. According to the X-ray diffraction (XRD), Particle Size Analyses(PSA) and scanning electron microscopy (SEM) analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100 nm were observed. Half cells, consisting of $Li_4Ti_5O_{12}$ as working electrode and lithium foil as both counter and reference electrodes showed the high performance of high rate discharge capacity and 173 mAh/g at 0.2C in the range of $1.0\sim2.5 V$. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transform during the lithium intercalation and deintercalation process.

Prediction Model for Reduced Bone mass in Women using Individual Characteristics & Life Style Factors (여성의 개인적 특성과 생활양식요인을 이용한 골량감소 예측모형)

  • Lee, Eun-Nam;Lee, Eun-Ok
    • Journal of muscle and joint health
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 1998
  • This study was carried out to identify the Important modifiable risk factors for reduced bone mass and to construct prediction model which can classify women with either low or high bone mass. Through the literature review, individual characteristics such as age, body weight, height, education level, family history, age of menarche, postmenopausal period, gravity, parity, menopausal status, and breast feeding period were identified and factors of life style such as past milk consumption, past physical activity, present daily activity, present calcium intake, alcohol intake, cigarette smoking, coffee consumption were identified as influencing factors of reduced bone mass in women. Four hundred and eighty women aged between 28 and 76 who had given measurement bone mineral density by dual energy x-ray absortiometry in lumbar vertebrae and femur from July to October, 1997 at 4 general hospitals in Seoul and Pusan were selected for this study. Women were excluded if they had a history of any chronic illness such as rheumatoid arthritis, diabetes mellitus, hyperthroidism, & gastrointestinal disorder and any medication such as calcium supplements, calcitonin, estrogen, thyroxine, antacids, & corticosteroids known affect bone. As a result of these exclusion criteria, four hundred and seventeen women were used for analysis. Multiple logistic regression model was developed for estimating the likelihood of the presence or absence of reduced bone mass. A SAS procedure was used to estimate risk factor coefficient. The results are as follows For lumbar spine, the variables significant were age, body weight, menopause status, daily activity, past milk consumption, and past physical activity(p<0.01), while for femoral Ward's triangle, age, body weight, level of education, past milk consumption, past physical activity(p<0.001). Past physical activity, present daily activity and past milk consumption are the most powerful modifiable predictors in vertebrae and femur among the predictors. When the model performance was evaluated by comparing the observed outcome with predicted outcome, the model correctly identified 74.1% of persons with reduced bone mass and 84.5% of persons with normal bone mass in the lumbar vertebrae and 82.9% of persons with reduced bone mass and 75.0% of persons with normal bone mass in the femoral Ward's triangle. On the basis of these results, a number of recommendations for the management of reduced bone mass may be made : First, those woman who are classified as high risk group of the reduced bone mass in the prediction model should examine the bone mineral density to further examine the usefulness of this model. Second, the optimal amount of milk consumption and a regular weight bearing exercise in childhood, adolescence, and early adult should be ensured.

  • PDF

An Analytical Study on the Performance Analysis of a Desalination System by Condensing Method (응축방식을 이용한 담수화 시스템의 성능예측을 위한 분석연구)

  • Kim, Chul-Ho;Kim, Won-Il;Choi, Jea-Young;Kim, Jae-Choul;Kim, Min-Sun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • A new concept of an Eco-friendly desalination method is introduced in this study. The main idea of the desalination method of seawater is the condensation of the vaporized seawater by solar heat energy on the surface of seashore. The wind turbine blade plays a role of heat exchanger condensing the vaporized water in the air. In this analytical study, the availability of the proposed desalination system was studied. First, an analytical condensation theory of the vaporized water in air was arranged and the parametric study was conducted to estimate the amount of freshwater produced from the system with the change of the temperature difference between the humid air and turbine blade, and the relative humidity in air, and wind speed. From the analytical calculation, 2,927(ton/year) of freshwater was produced at the vertical-type wind turbine (Diameter=4m, Height=3m) as the relative humidity is 100%, the temperature difference between the impeller blade and the humid air is $40^{\circ}C$ and the wind speed is 10m/s.

Analysis of Relationship Between Compressive Strength and Compaction Ratio of Roller-Compacted Concrete Pavement (포장용 롤러전압콘크리트의 다짐도와 압축강도의 상관관계 분석)

  • Chung, Gun Woo;Song, Si Hoon;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1117-1123
    • /
    • 2016
  • Roller-Compacted Concrete Pavement (RCCP) is a type of pavement that shares conventional concrete pavement material characteristics and asphalt pavement construction characteristics. Even though RCCP is compacted in the same way and have similar aggregate gradation to asphalt pavements, its materials and structural performance properties are similar to those of conventional concrete pavement. With cement hydration and aggregate interlock, Roller-Compacted Concrete or RCC can provide strength properties equal to those of conventional concrete with low cement content. Therefore, compaction ratio of RCC can highly influence on its strength. In general, 95% of compaction ratio is required for proper strength development. RCC strength can be highly influenced by compaction energy which depends on compaction equipment and compaction method. Therefore, it is necessary to analyze the relationship between compressive strength and compaction ratio of RCC. RCCP specimens were produced at different compaction ratio by using different compaction methods and energies. The compaction ratio was defined by the ratio of the specimen's dry density and its maximum dry density. The maximum dry density was obtained from Modified Proctor test. 28 days compressive strength corresponding to each compaction ratio case was tested. Finally, the relationship between compressive strength and compaction ratio can be analyzed. For application of roller-compacted concrete in domestic construction site, the relationship is important for field compaction management.

Designation of fuel oil scrubber nozzle positioning using CFD analysis and PIV methods (CFD 해석 및 PIV 실험을 통한 연료유 스크러버의 노즐 위치선정)

  • Kim, In-Cheol;Kim, Chang-Goo;Park, Sung-Jin;Cho, Dong-Yeon;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.773-778
    • /
    • 2015
  • Global warming has recently become an issue that has resulted in a growing trend to minimize environmental pollution. The International Maritime Organization (IMO) has shown that the majority of marine atmospheric pollution occurs as a result of emissions from marine vessels. Therefore, the environmental regulations and emission standards regarding marine vessels have gradually become stricter, and the research and development in this area is experiencing significant progress. In this study, a nozzle for a fuel oil scrubber was investigated using computational fluid dynamics (CFD) and particle imaging velocimetry (PIV). Experiments were conducted on scaled-down model of the scrubber to determine its performance, which was then compared with CFD results. Based on the experimental results, it was found that at a spray angle of $66^{\circ}$, the spray velocity at the nozzle was 20.1 m/s. From this comparison, a full-scale scrubber model was analyzed using CFD, and the effect of the positioning of the nozzle was studied.

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.