• Title/Summary/Keyword: Energy Monitoring

Search Result 2,071, Processing Time 0.029 seconds

The Monitoring System of Photovoltaic Module using Fault Diagnosis Sensor (태양전지 모듈 고장진단센서를 이용한 모니터링 시스템)

  • Park, Yuna;Kang, Gihwan;Ju, Youngchul;Kim, Soohyun;Ko, Sukwhan;Jang, Gilsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.91-100
    • /
    • 2016
  • This paper proposes the PV module fault diagnosis sensor which is applied to Zigbee wireless network, and monitoring system using the developed sensor. It is designed with embedded sensor in junction box. The diagnosis elements for algorithm were voltage and temperature. For that reason, It is able to reduce the price and separate the fault of bypass diode from shading differently from other monitoring systems. This fault diagnosis algorithm verified through the Field-installed operations of PV module.

Photovoltaic System Energy Performance Analysis Using Meteorological Monitoring Data (기상 환경 모니터링 데이터를 이용한 태양광발전시스템 발전량 성능 분석)

  • Kwon, Oh-Hyun;Lee, Kyung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.11-31
    • /
    • 2018
  • Nowadays, domestic photovoltaic system market has been expanded and the governmental dissemination policy has been continued. There is only PV system output performance analysis which is called Performance Ratio(PR) analysis. However, there exists many parameters that can affect PV system output. This papers shows the PV system energy performance analysis using meteorological monitoring data. The meteorological monitoring system was installed in the H university and we analyzed the PV system which installed in the H university. We also investigated other three PV systems which located less than 3 kilometers from H university. We evaluated total 4 PV systems through the field survey data, design drawing data and power generation data. Finally, we compared the actual measuring data with the simulation data using PVSYST software.

Showerhead Surface Temperature Monitoring Method of PE-CVD Equipment (PE-CVD 장비의 샤워헤드 표면 온도 모니터링 방법)

  • Wang, Hyun-Chul;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.16-21
    • /
    • 2020
  • How accurately reproducible energy is delivered to the wafer in the process of making thin films using PE-CVD (Plasma enhanced chemical vapor deposition) during the semiconductor process. This is the most important technique, and most of the reaction on the wafer surface is made by thermal energy. In this study, we studied the method of monitoring the change of thermal energy transferred to the wafer surface by monitoring the temperature change according to the change of the thin film formed on the showerhead facing the wafer. Through this research, we could confirm the monitoring of wafer thin-film which is changed due to abnormal operation and accumulation of equipment, and we can expect improvement of semiconductor quality and yield through process reproducibility and equipment status by real-time monitoring of problem of deposition process equipment performance.

Design and Implementation of Stand-alone Microgrid Monitoring System for Green Energy Independence Island (그린에너지 자립섬을 위한 계통 독립형 마이크로그리드 모니터링 시스템 설계 및 구현)

  • Song, Hwa-Jung;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.527-532
    • /
    • 2015
  • In domestic island regions, the power supply generally depends on diesel generators due to difficulties of grid connection. To solve this issue, recently, the study on the stand-alone microgrid technology and its test are being actively conducted. In this paper, we propose the stand-alone microgrid integration monitoring system for energy independence island. First, we design the software architecture for monitoring of solar, wind, diesel power generation facilities, transmission and distribution of grid network, and energy storage system. Then, we implement the monitoring software that allows administrators to identify and run the monitoring software easily.

The Monitoring System with PV Module-level Fault Diagnosis Algorithm (태양전지모듈 고장 진단 알고리즘을 적용한 모니터링시스템)

  • Ko, Suk-Whan;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul;Song, Hyung-June;Shin, Woo-Gyun;Kang, Gi-Hwan;Choi, Jung-Rae;Kang, In-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • The objects of PV (Photovoltaic) monitoring system is to reduce the loss of system and operation and maintenance costs. In case of PV plants with configured of centralized inverter type, only 1 PV module might be caused a large loss in the PV plant. For this reason, the monitoring technology of PV module-level that find out the location of the fault module and reduce the system losses is interested. In this paper, a fault diagnosis algorithm are proposed using thermal and electrical characteristics of PV modules under failure. In addition, the monitoring system applied with proposed algorithm was constructed. The wireless sensor using LoRa chip was designed to be able to connect with IoT device in the future. The characteristics of PV module by shading is not failure but it is treated as a temporary failure. In the monitoring system, it is possible to diagnose whether or not failure of bypass diode inside the junction box. The fault diagnosis algorithm are developed on considering a situation such as communication error of wireless sensor and empirical performance evaluation are currently conducting.

Energy Consumption Monitoring System for Each Axis of Machining Center (머시닝 센터의 각 축별 에너지 모니터링 시스템)

  • Kim, Jae Hyeok;Nam, Sung Ho;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.339-344
    • /
    • 2015
  • Machine tools are one of the energy-intensive equipment used in the manufacturing industry. The importance of energy has increased and the machine tools are required to be energy-efficient. The servo systems of the machine tool consume electrical power to rotate a spindle and to feed a tool during machining. Servo system consumes a lot of energy when the machine tool is operated. The energy consumption pattern of each axis needs to be investigated in order to optimize the machining process with regard to energy cost. In this paper, an energy monitoring system is developed considering various measuring points of servo system in order to grasp the energy consumption pattern of each axis.

Vulnerability Analysis on a VPN for a Remote Monitoring System

  • Kim Jung Soo;Kim Jong Soo;Park Il Jin;Min Kyung Sik;Choi Young Myung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.346-356
    • /
    • 2004
  • 14 Pressurized Water Reactors (PWR) in Korea use a remote monitoring system (RMS), which have been used in Korea since 1998. A Memorandum of Understanding on Remote Monitoring, based on Enhanced Cooperation on PWRs, was signed at the 10th Safeguards Review Meeting in October 2001 between the International Atomic Energy Agency (IAEA) and Ministry Of Science and Technology (MOST). Thereafter, all PWR power plants applied for remote monitoring systems. However, the existing method is high cost (involving expensive telephone costs). So, it was eventually applied to an Internet system for Remote Monitoring. According to the Internet-based Virtual Private Network (VPN) applied to Remote Monitoring, the Korea Atomic Energy Research Institute (KAERI) came to an agreement with the IAEA, using a Member State Support Program (MSSP). Phase I is a Lab test. Phase II is to apply it to a target power plant. Phase III is to apply it to all the power plants. This paper reports on the penetration testing of Phase I. Phase I involved both domestic testing and international testing. The target of the testing consisted of a Surveillance Digital Integrated System (SDIS) Server, IAEA Server and TCNC (Technology Center for Nuclear Control) Server. In each system, Virtual Private Network (VPN) system hardware was installed. The penetration of the three systems and the three VPNs was tested. The domestic test involved two hacking scenarios: hacking from the outside and hacking from the inside. The international test involved one scenario from the outside. The results of tests demonstrated that the VPN hardware provided a good defense against hacking. We verified that there was no invasion of the system (SDIS Server and VPN; TCNC Server and VPN; and IAEA Server and VPN) via penetration testing.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.

Energy-Efficient Context Monitoring Methods for Android Devices (안드로이드 디바이스를 위한 에너지 효율적 컨텍스트 모니터링 기법)

  • Kim, Moon Kwon;Lee, Jae Yoo;Kim, Soo Dong
    • Journal of Software Engineering Society
    • /
    • v.26 no.3
    • /
    • pp.53-62
    • /
    • 2013
  • Along with increasing supplies of smart devices, a proliferation of context-aware applications is came. However, acquiring contexts through sensors requires considerable energy consumption. It has became big constraints on running many context-aware applications in mobile devices having limited battery capacity. Hence, energy-efficient methods for monitoring contexts are highly required. In this paper, we propose four context monitoring methods, analyse energy consumption in each method, and provide guidelines for applying the methods. It is effective to decrease energy consumption for monitoring contexts with applying the methods. To assess the proposed methods, we implement an application that is aware of a user's motion and show quantitative comparison between each of the methods.

  • PDF