Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.20
no.3
/
pp.205-212
/
2008
This paper describes the application of an inverse building model to a calibrated forward building model using EnergyPlus program. Typically, inverse models are trained using measured data. However, in this study, an inverse building model was trained using data generated by an EnergyPlus model for an actual office building. The EnergyPlus model was calibrated using field data for the building. A training data set for a month of July was generated from the EnergyPlus model to train the inverse model. Cooling load prediction of the trained inverse model was tested using another data set from the EnergyPlus model for a month of August. Predicted cooling loads showed good agreement with cooling loads from the EnergyPlus model with root-mean square errors of 4.11%. In addition, different control strategies with dynamic cooling setpoint variation were simulated using the inverse model. Peak cooling loads and daily cooling loads were compared for the dynamic simulation.
International Journal of Computer Science & Network Security
/
v.22
no.7
/
pp.301-307
/
2022
Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.
Proceedings of the Korean Nuclear Society Conference
/
1997.05b
/
pp.407-412
/
1997
The predictive results between a dynamic food-chain model (DYNACON) and an equilibrium model (NRC model) were compared to show the physical validity of DYNACON. Although the mathematical formulations and transport processes of radionuclides in the environment are different between two models, the comparative study shows good agreement for deposition events that occur during the growing season of plants.
Kim, Yong-Ha;Jo, Hyun-Mi;Kim, Ui-Gyeong;Yoo, Jeong-Hui;Kim, Dong-Gun;Woo, Sung-Min
The Transactions of The Korean Institute of Electrical Engineers
/
v.60
no.6
/
pp.1103-1111
/
2011
This paper is developed to Energy Balance Flow show the flow of total energy resource be used nationally. The Energy Balance Flow is applicable of demand management factor through the analysis of foreign energy model of supply and demand and energy statistic data in the country. This study is based on and developed to Energy system management model is able to appraisal efficient of energy cost cutting, CO2 emission reduction and Energy saving at the national level calculated effect reached amount of primary energy to change of energy flow followed application of demand side management factor is able to appraisal quantitatively at the total energy to model of demand and supply.
International conference on construction engineering and project management
/
2022.06a
/
pp.1256-1263
/
2022
With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.
In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during charging mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also energy stored inside the bed is computed. A comparison between refined model and non refined model is done. Finally using refined model the effect of bed material (Glass, Fine clay ,and aluminum ), and air flow rate per unit area Ga (0.3, 0.4, and 0.5 kg/$m^2$-s) on energy storage characteristics was studied.
International Journal of Air-Conditioning and Refrigeration
/
v.12
no.4
/
pp.169-175
/
2004
Case study was performed to analyze energy load for department stores and develop energy load model to be applied to a cogeneration system. Energy loads of 14 departments were analyzed based on energy load sheets written by operators and energy load of one department store was measured through modem communication for a year. Energy load of department stores showed various trends depending on when they were opened or closed, or by hour, day and month. In this paper, the measurement was compared with the data in energy load sheets and resolved, and energy load model for a department store was built. It is important to use an accurate energy load model for an accurate feasibility study applying a cogeneration system to buildings.
The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.
Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.
Journal of the Korean institute of surface engineering
/
v.43
no.3
/
pp.159-164
/
2010
Surface roughness of deposited or etched film strongly depends on ion bombardment. Relationships between ion bombardment variables and surface roughness are too complicated to model analytically. To overcome this, an empirical neural network model was constructed and applied to a deposition process of silicon nitride (SiN) films. The films were deposited by using a pulsed plasma enhanced chemical vapor deposition system in $SiH_4$-$NH_4$ plasma. Radio frequency source power and duty ratio were varied in the range of 200-800 W and 40-100%. A total of 20 experiments were conducted. A non-invasive ion energy analyzer was used to collect ion energy distribution. The diagnostic variables examined include high (or) low ion energy and high (or low) ion energy flux. Mean surface roughness was measured by using atomic force microscopy. A neural network model relating the diagnostic variables to the surface roughness was constructed and its prediction performance was optimized by using a genetic algorithm. The optimized model yielded an improved performance of about 58% over statistical regression model. The model revealed very interesting features useful for optimization of surface roughness. This includes a reduction in surface roughness either by an increase in ion energy flux at lower ion energy or by an increase in higher ion energy at lower ion energy flux.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.