• Title/Summary/Keyword: Energy Materials

Search Result 11,245, Processing Time 0.04 seconds

The R & D of SiC Fiber Reinforced Composites for Energy and Transportation Applications

  • Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.5-13
    • /
    • 2006
  • Based on the inventions of continuous ceramic fibers, such as C, SiC, $Al_2O_3$ etc., by polymer precursor driven methods, there have been many efforts to fabricate ceramic continuous fiber reinforced composite materials with metals and ceramics matrices. The main purpose of the R & D efforts has been to produce materials for severe environments, including advanced energy systems, advanced transportation systems. The efforts have been started from the R & D of metal matrix composite materials and now the strong emphasis on ceramic matrix composites R & D can be recognized. This paper provides a brief review about the national efforts to establish advanced composite materials for future industries starting from mid 70s. C/Al and SiC/Al are the typical examples to be applied transportation systems and energy systems. The excellences in specific strength and overall mechanical properties, the excellences in environmental resistance make those materials as potential materials for advanced ocean construction and marine transportation systems. About the recent progress in ceramic fiber reinforced ceramic composites, advanced SiC/SiC composites including NITE-SiC/SiC will be introduced and the present status will be introduced.

  • PDF

Dynamic Force Analysis of the 6-DOF Parallel Manipulator

  • Tanaka, Yoshito;Yun, So-Nam;Hitaka, Yasunobu;Wakiyama, Masahiro;Jeong, Eun-A;Kim, Ji-U;Park, Jung-Ho;Ham, Young-Bog
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • The 6DOF (degrees of freedom) Parallel Manipulators have some advantages that are high power, high rigidity, high precision for positioning and compact mechanism compared with conventional serial link manipulators. For these Parallel Manipulators, it can be expected to work in the new fields such that the medical operation, high-precision processing technology and so on. For this expectation, it is necessary to control the action reaction pair of forces which act between the Parallel Manipulator and the operated object. In this paper, we analyze the dynamics of the 6DOF Parallel Manipulator and present numerical simulation results.

Large Scale Applications of Nanocellulosic Materials - A Comprehensive Review -

  • Lindstrom, Tom;Naderi, Ali;Wiberg, Anna
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.5-21
    • /
    • 2015
  • The common production methods of nanocellulosic (cellulosic nanofibrils, CNF) materials from wood are being reviewed, together with large scale applications and particularly papermaking applications. The high energy demand for producing CNF has been one particular problem, which has been addressed over the years and can now be considered solved. Another problem was the clogging of homogenizers/microfluidizers, and the different routes to decrease the energy demand. The clogging tendency, related to the flocculation tendency of fibres is discussed in some detail. The most common methods to decrease the energy demand are TEMPO-oxidation, carboxymethylation and mechanical/enzymatic pre-treatments in the order of increased energy demand for delamination. The rheology characteristics of CNF materials, i.e. the high shear viscosity, shear thinning and the thixotropic properties are being illuminated. CNF materials are strength adjuvants that enhance the relative bonded area in paper sheets and, hence increase the sheet density and give an increased strength of the paper, particularly for chemical pulps. At the same time papers obtain a lower light scattering, higher hygroexpansion and decreased air permeability, similar to the effects of beating pulps. The negative effects on drainage by CNF materials must be alleviated through the appropriate use of microparticulate drainage aids. The use of CNF in films and coatings is interesting because CNF films and coatings can provide paper/board with good oxygen barrier properties, particularly at low relative humidities. Some other high volume applications such as concrete, oil recovery applications, automotive body applications and plastic packaging are also briefly discussed.

First-Principles Calculations for Design of Efficient Electrocatalysts (제일원리 계산을 활용한 전기화학 촉매 연구)

  • Kim, Dong Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.393-400
    • /
    • 2021
  • As the recent climate problems are getting worse year after year, the demands for clean energy materials have highly increased in modern society. However, the candidate material classes for clean energy expand rapidly and the outcomes are too complex to be interpreted at laboratory scale (e.g., multicomponent materials). In order to overcome these issues, the first-principles calculations are becoming attractive in the field of material science. The calculations can be performed rapidly using virtual environments without physical limitations in a vast candidate pool, and theory can address the origin of activity through the calculations of electronic structure of materials, even if the structure of material is too complex. Therefore, in terms of the latest trends, we report academic progress related to the first-principles calculations for design of efficient electrocatalysts. The basic background for theory and specific research examples are reported together with the perspective on the design of novel materials using first-principles calculations.

A Study on the Reliability Assesment of Solar Photovoltaic and Thermal Collector System (태양광열 시스템의 신뢰성 평가에 관한 연구)

  • Park, Tae-Kook;Bae, Seung-Hoon;Kim, Sang-Kyo;Kim, Seon-Min;Kim, Dae-Hwan;Eom, Hak-Yong;Lee, Keun-Hui
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.49-64
    • /
    • 2020
  • Photovoltaic and Thermal collector (PV/T) systems are renewable energy devices that can produce electricity and heat energy simultaneously using solar panels and heat exchangers. Since PV/T systems are exposed to the outdoors, their reliability is affected by various environmental factors. This paper presents a reliability test for a PV/T system and evaluates the test results. The reliability assessment entails performance, environment, safety, and life tests. The factor that had the greatest influence on the life of the system was the hydraulic pressure applied to the heat exchanger. A test was conducted by repeatedly applying pressure to the PV/T system, and a reliability analysis was conducted based on the test results. As a result, the shape parameter (β) value of 5.6658 and the B10life 308,577 cycles at the lower 95% confidence interval were obtained.

Stretchable Energy Harvester Based on Piezoelectric Composites and Kirigami Electrodes (압전 복합소재와 키리가미 섬유전극을 적용한 스트레쳐블 에너지 하베스팅 소자)

  • Boran Kim;Dong Yeol Hyeon;Kwi-Il Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.525-530
    • /
    • 2023
  • Stretchable piezoelectric energy harvester (S-PEHs) based on composite materials are considered one of the potential candidates for realizing wearable self-powered devices for smart clothing and electronic skin. However, low energy conversion performance and expensive stretchable electrodes are major bottlenecks hindering the development and application of S-PEHs. Here, we fabricated the S-PEH by adopting the piezoelectric composites with enhanced stress transfer properties and kirigami-patterned textile electrodes. The optimum contents of piezoelectric BaTiO3 nanoparticles inside the carbon nanotube/ecoflex composite were selected as 30 wt% considering the trade-off between stretchability and energy harvesting performance of the device. The final S-PEH shows an output voltage and mechanical stability of ~5 V and ~3,000 cycles under repeated 150% of tensile strain, respectively. This work presents a cost-effective and scalable way to fabricate stretchable piezoelectric devices for self-powered wearable electronic systems.

A Study on Energy Release Rate for Interface Cracks in Pseudo-isotropic Dissimilar Materials (유사등방성 이종재 접합계면 균열의 에너지 해방률에 관한 연구)

  • 이원욱;김진광;조상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.193-200
    • /
    • 2003
  • The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was obtained by the eigenfunction expansion method using the two-term William's type complex stress function. The complex stress function for pseudo-isotropic materials must be different from that for anisotropic materials. The energy release rate for an interface crack in pseudo-isotropic dissimilar materials was analyzed numerically by RWCIM. The results obtained were verified by comparing the other worker's results and discussed.

BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs) (BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발)

  • An, Hyegsoon;Shin, Dongwook;Choi, Sung Min;Lee, Jong-Ho;Son, Ji-Won;Kim, Byung-Kook;Je, Hae June;Lee, Hae-Weon;Yoon, Kyung Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.

A Study on Design of the Linear Generator in the Double Acting Stirling Engine (양방향 스털링엔진의 선형발전기 설계에 관한 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.

Heat Treatment Effect on Super Duplex Stainless Steel UNS S32750 FCA Multipass Welds (슈퍼 듀플렉스 스테인리스강 UNS S32750의 FCA 다층 용접부의 용접 후 열처리 영향)

  • Jang, Bok-Su;Moon, In-June;Lim, Myung-Jin;Kim, Se-Cheol;Kim, Soo-Sung;Lee, Jung-Won;Park, Hai-Woong;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.48-53
    • /
    • 2014
  • This study was carried out to investigate the effect of postweld heat treatment(PWHT, 930, 1080, $1230^{\circ}C$) on the microstructure, phase formation, pitting corrosion and mechanical properties such as hardness, tensile strength and impact values of super duplex stainless steel(UNS S32750) multipass welds. Based on the microstructural examination and X-ray diffraction analysis, it was found that the ${\sigma}$ phase was formed in the welds heat treated at $930^{\circ}C$ in which the ferrite content greatly decreased into 5~10% in the welds. The secondary austenite was formed in the reheated zone of welds and redissolved into ferrite with increasing heat treatment temperatures. The tensile strength and impact values of welds heat treated at $930^{\circ}C$ were the lowest and revealed the brittle fracture surface. The weight loss by pitting corrosion increased with test temperatures. It was confirmed that pitting corrosion occurred mainly in secondary austenite of reheated zones. The postweld heat treatment temperature is recommended to be in the range of $1050{\sim}1150^{\circ}C$.