• Title/Summary/Keyword: Energy Information Model

Search Result 1,554, Processing Time 0.035 seconds

An Energy Consumption Model for Time Hopping IR-UWB Wireless Sensor Networks

  • Hoque, M.E.;Khan, M.A.;Parvez, A.Al;An, Xizhi;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.316-324
    • /
    • 2007
  • In this paper we proposed an energy consumption model for IR-UWB wireless sensor networks. The model takes the advantages of PHY-MAC cross layer design, and we used slotted and un-slotted sleeping protocols to compare the energy consumption. We addressed different system design issues that are responsible to energy consumption and proposed an optimum model for the system design. We expect the slotted sleeping will consume less energy for bursty load than that of the un-slotted one. But if we consider latency, the un-slotted sleeping model performs better than the slotted sleeping case.

Design of CIM(Common Information Model) Profile for Smart City Energy Monitoring (스마트시티 에너지 감시를 위한 CIM(Common Information Model) 프로파일 설계)

  • Youngil, Kim;Changhun, Chae;Yeri, Kim;Jihoon, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • With the advent of high technologies such as the 4th Industrial Revolution and artificial intelligence and big data, efforts are being made to solve urban problems and improve the quality of life by applying new technologies in the smart city field. In addition, as carbon neutrality has emerged as an important issue due to global warming, smart city energy platform technologies such as urban energy management, efficiency improvement, and carbon reduction are in the spotlight. In order to effectively manage urban energy, energy resource information such as electricity, water, gas, hot water, heating, etc. must be collected from the management system of various energy utilities and managed on the central platform. The centrally integrated data is delivered to external city management systems that require city energy information through an energy platform. This study developed a CIM profile for smart city energy monitoring required to provide energy data to external systems. Electric data model were designed using the CIM class of IEC 61970, and water, gas, and heat data model were designed in compliance with the UML-based design ideas of IEC 61970.

A Tutorial: Information and Communications-based Intelligent Building Energy Monitoring and Efficient Systems

  • Seo, Si-O;Baek, Seung-Yong;Keum, Doyeop;Ryu, Seungwan;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2676-2689
    • /
    • 2013
  • Due to increased consumption of energy in the building environment, the building energy management systems (BEMS) solution has been developed to achieve energy saving and efficiency. However, because of the shortage of building energy management specialists and incompatibility among the energy management systems of different vendors, the BEMS solution can only be applied to limited buildings individually. To solve these problems, we propose a building cluster based remote energy monitoring and management (EMM) system and its functionalities and roles of each sub-system to simultaneously manage the energy problems of several buildings. We also introduce a novel energy demand forecasting algorithm by using past energy consumption data. Extensive performance evaluation study shows that the proposed regression based energy demand forecasting model is well fitted to the actual energy consumption model, and it also outperforms the artificial neural network (ANN) based forecasting model.

Adaptive Active Contour Model: a Localized Mutual Information Approach for Medical Image Segmentation

  • Dai, Shuanglu;Zhan, Shu;Song, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1840-1855
    • /
    • 2015
  • Troubles are often met when traditional active contours extract boundaries of medical images with inhomogeneous bias and various noises. Focusing on such a circumstance, a localized mutual information active contour model is discussed in the paper. By defining neighborhood of each point on the level set, mutual information is introduced to describe the relationship between the zero level set and image field. A driving energy term is then generated by integrating all the information. In addition, an expanding energy and internal energy are designed to regularize the driving energy. Contrary to piecewise constant model, new model has a better command of driving the contours without initialization.

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

Energy-Aware Preferential Attachment Model for Wireless Sensor Networks with Improved Survivability

  • Ma, Rufei;Liu, Erwu;Wang, Rui;Zhang, Zhengqing;Li, Kezhi;Liu, Chi;Wang, Ping;Zhou, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3066-3079
    • /
    • 2016
  • Recent years have witnessed a dramatic increase in topology research of wireless sensor networks (WSNs) where both energy consumption and survivability need careful consideration. To balance energy consumption and ensure survivability against both random failures and deliberate attacks, we resort to complex network theory and propose an energy-aware preferential attachment (EPA) model to generate a robust topology for WSNs. In the proposed model, by taking the transmission range and energy consumption of the sensor nodes into account, we combine the characters of Erdős -Rényi (ER) model and Barabasi-Albert (BA) model in this new model and introduce tunable coefficients for balancing connectivity, energy consumption, and survivability. The correctness of our theoretic analysis is verified by simulation results. We find that the topology of WSNs built by EPA model is asymptotically power-law and can have different characters in connectivity, energy consumption, and survivability by using different coefficients. This model can significantly improve energy efficiency as well as enhance network survivability by changing coefficients according to the requirement of the real environment where WSNs deployed and therefore lead to a crucial improvement of network performance.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

Machine Learning-based hydrogen charging station energy demand prediction model (머신러닝 기반 수소 충전소 에너지 수요 예측 모델)

  • MinWoo Hwang;Yerim Ha;Sanguk Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.47-56
    • /
    • 2023
  • Hydrogen energy is an eco-friendly energy that produces heat and electricity with high energy efficiency and does not emit harmful substances such as greenhouse gases and fine dust. In particular, smart hydrogen energy is an economical, sustainable, and safe future smart hydrogen energy service, which means a service that stably operates based on 'data' by digitally integrating hydrogen energy infrastructure. In this paper, in order to implement a data-based hydrogen charging station demand forecasting model, three hydrogen charging stations (Chuncheon, Sokcho, Pyeongchang) installed in Gangwon-do were selected, supply and demand data of hydrogen charging stations were secured, and 7 machine learning and deep learning algorithms were used. was selected to learn a model with a total of 27 types of input data (weather data + demand for hydrogen charging stations), and the model was evaluated with root mean square error (RMSE). Through this, this paper proposes a machine learning-based hydrogen charging station energy demand prediction model for optimal hydrogen energy supply and demand.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.