• Title/Summary/Keyword: Energy Impact Analysis

Search Result 1,233, Processing Time 0.035 seconds

Impact of Horizontal Global Solar Radiation Calculation Modelson Building Energy Performance Analysis Considering Solar Heat Gain Coefficient and Window-to-wall Ratio (수평면 전일사량 산출모델이 일사열취득계수 및 창면적비를 고려한 건물 에너지 성능분석에 미치는 영향)

  • Kim, Kee Han;Oh, John Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Solar applications analysis and building energy performance depend on the quality of the solar resource data available. Unfortunately, most of the weather stations do not measure solar radiation data in Korea, as a reason many researchers have studied different solar radiation estimation models and suggested to apply them to various locations in Korea. In addition, they also studied the impact of hourly global solar radiation on energy performance of an office building by comparing the simulated building energy consumptions using four different weather files, one using measured, and three estimated solar radiation from different models, which are Cloud-cover Radiation Model (CRM), Zhang and Huang Model (ZHM), and Meteorological Radiation Model (MRM), and concluded that there was some impact on energy performance of the building due to the using different solar radiation models. However, the result cannot be applied to all other buildings since the simulated office building for that study only used limited building characteristics such as using fixed values of solar heat gain coefficient (SHGC) and window-to-wall ratio (WWR), which are significant parameters related to solar radiation that affect to the building energy consumptions. Therefore, there is a need to identify how the building energy consumption will be changed by varying these building parameters. In this study, the impact of one measured and three estimated global solar radiation on energy performance of the office building was conducted taking account of SHGC and WWR. As a result, it was identified that the impact of four different solar radiation data on energy performance of the office building was evident regardless SHGC and WWR changes, and concluded that the most suitable solar models was changed from the CRM/ZHM to the MRM as SHGC and WWR increases.

Analyzing the Impact of Inventory Management Performance on the Energy Efficiency in Korean Petrochemical Companies (재고관리성과가 에너지효율성에 미치는 영향에 대한 실증분석 : 국내 석유화학 기업을 대상으로)

  • Kim, Gilwhan;Lee, Jiwoong
    • Korean Management Science Review
    • /
    • v.34 no.3
    • /
    • pp.1-14
    • /
    • 2017
  • This study empirically analyzes the impact of inventory management performance on the energy efficiency in Korean petrochemical companies. The concept of the distance function is used to define the energy efficiency and the estimation of the distance function is performed using the stochastic frontier analysis. The inventory turnover is selected as the variable indicating the inventory management performance of the company. The main results of this study are as follows. First, the inventory turnover has a positive impact on energy efficiency. Second, during the period over 2011~2015, while the gap in energy efficiency among the companies expanded, the average energy efficiency decreased. Third, the average energy efficiency in upstream process companies was greater than downstream process companies and the gap in energy efficiency among downstream process companies was greater than upstream process companies. Fourth, the average marginal effect of inventory turnover on energy efficiency increased gradually from 2011 to 2015. Finally, the average marginal effect of inventory turnover in downstream process companies was greater than upstream process companies, and the gap in the marginal effect of inventory turnover among downstream process companies was greater than upstream process companies. These results together imply the importance of inventory management in terms of energy efficiency.

Behaviour of GFRP composite plate under ballistic impact: experimental and FE analyses

  • Ansari, Md. Muslim;Chakrabarti, Anupam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.829-849
    • /
    • 2016
  • In this paper, experimental as well as numerical analysis of Glass Fiber Reinforced Polymer (GFRP) laminated composite has been presented under ballistic impact with varying projectile nose shapes (conical, ogival and spherical) and incidence velocities. The experimental impact tests on GFRP composite plate reinforced with woven glass fiber ($0^{\circ}/90^{\circ}$)s are performed by using pneumatic gun. A three dimensional finite element model is developed in AUTODYN hydro code to validate the experimental results and to study the ballistic perforation characteristic of the target with different parametric variations. The influence of projectile nose shapes, plate thickness and incidence velocity on the variation of residual velocity, ballistic limit, contact force-time histories, energy absorption, damage pattern and damage area in the composite target have been studied. The material characterization of GFRP composite is carried out as required for the progressive damage analysis of composite. The numerical results from the present FE model in terms of residual velocity, absorbed energy, damage pattern and damage area are having close agreement with the results from the experimental impact tests.

Statistical analysis of the energy for cable cutting (케이블 절단에 필요한 에너지 통계적 분석)

  • Choi, Chang-Sun;Kang, Won-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.400-403
    • /
    • 2011
  • We performed Instron and Impact tests to estimate necessary explosive charge weight for cutting the cable whose diameter is 22 mm. The cutting energy measured by Instron was 21.3 J. Impact test were performed 8 times each at 5 different energies. The Impact test results were analysed by Probit methods. The cutting energy was calculated 37.7 J with 99.99% probability at 99% confidence, which is roughly equivalent to 250 mg of Zirconium potassium Perchlorate (ZPP).

  • PDF

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Damage Behaviors by Particle Impact Energy of $Al_2O_3-TiO_2$ Coated Glass Specimen ($Al_2O_3-TiO_2$ 용사코팅된 유리의 입자충격 에너지에 따른 손상거동)

  • Lee, Moon-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.107-114
    • /
    • 2012
  • Fracture of brittle material due to dynamic load such a particle impact has been reported by many researchers as the fracture behavior by variation of stress for a short minute. Especially, the brittle material, such a ceramic, applied to the structural component of machine, is considered as the important project. In order to evaluate the improvement of impact resistance, the particle impact test for the $Al_2O_3-TiO_2$ coated glass is practiced. And then, the damage variation according to the impact energy of steel ball was evaluated. There was a large improvement by the ceramic coating on the surface of a glass substrate. The damage volume was especially imported to evaluate damage behavior in quantity. These data were plotted on logarithmic coordinate and experimental equations were induced by data analysis based on test results. And the variation of critical energy for crack initiation was analyzed with critical impact energy when each crack occurs.

A Study on Fracture Parameters for PVC/MBS Composites under Low Velocity Impact (저속 충격시 PVC/MBS재료의 파괴특성에 관한 연구)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.837-840
    • /
    • 2002
  • An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates($G_c$) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor $K_{Id}$ was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact fur PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.C.

  • PDF

Behavior of reinforced concrete plates under impact loading: different support conditions and sizes

  • Husem, Metin;Cosgun, Suleyman I.
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.389-404
    • /
    • 2016
  • In this study, effects of impact loads on reinforced concrete (RC) plates are examined analytically. During examination of RC plates, they were exposed to impact loading with two different support conditions in three different sizes. RC plates in different support conditions were analyzed with Concrete Damage Plasticity Model (CDP) and reinforcing steel was modeled with Classical Metal Plasticity Model (CMP) by ABAQUS finite element software. After the analysis it is found that impact loads, displacements, energy absorption capacities and damage patterns are changed due to support conditions and plate sizes. Results that are obtained from RC plate experiments in literature under impact loads are found to be similar with the results of numerical analysis with CDP material models.

Heavy-weight floor impact noise propagation in a multi-story building (다층 공동주택의 중량충격원 전파 특성 해석)

  • Lee, Sinyeob;Hwang, Dukyoung;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.225-226
    • /
    • 2014
  • In multi-story buildings, heavy-weight floor impact noise propagates through multiple layers. In order to evaluate the influence of structural vibration and propagation, the actual twelve-story building was excited by an impact ball. Sound and vibration responses of each floor was measured using accelerometers and a microphone. Vibration characteristics and its transfer paths were different depending on the excitation floor locations due to differences in the structural characteristics. From the measurement result, transfer characteristics were quantified by statistical energy analysis. It was confirmed that the heavy-weight floor impact noise influence not only adjacent floor. The impact noise transferred and affected multiple layers.

  • PDF

The Analysis of a Potential Solar Energy Resource Map (태양에너지 가용잠재량 자원지도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.573-579
    • /
    • 2012
  • Many countries have recently been expanding efforts for low-carbon global economy to solve the problem of global warming. Development and research for various types of new reusable energy is on the rise throughout the world. The most promising source of energy is the solar photovoltaic energy and the government take an initiative to establish both short-term and long-term policies to develop the solar energy potential resource map. The solar energy and industrialize area researched by GIS methods for optimum site for solar power transfer system. This study attempts to address the hot issue of the development and suitability of the solar photovoltaic energy site using GIS spatial analysis. We need to analyze and describe the solar technology, green energy policies and the energy market trend of the field.