• Title/Summary/Keyword: Energy Flux Density

Search Result 263, Processing Time 0.022 seconds

Dynamic Characteristics of Moving Coil Linear Oscillatory Actuator Considering the Variable Inductance and Push/pull Effects (가동차 위치에 따른 인덕턴스 변화와 Push/Pull 효과를 고려한 가동코일형 LOA의 동특성)

  • Jeong, Sang-Sub;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.307-314
    • /
    • 2001
  • A moving coil linear oscillatory actuator is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The variation of mover position and the consequent changes of coil flux path affect the coil inductance, because coil flux leaks at the open region of LOA stator. The interaction between permanent magnet and armature field is to shift the airgap flux density variation due to the magnet alone by a certain amount. The unbalanced reciprocation force due to armature reaction field decreases the advantage of moving coil LOA, such as a high degree of linearity and controllability in the force ad motion control. This paper firstly describes the coil inductance, the deviation of flux density, and the unbalanced reciprocation force, which are derived form the permeance model of LOA. Secondly, the analytical method are verified using the 2D finite element method and tests. Finally, the dynamic simulation algorithm taking the armature reaction effect and variable inductance into account, is proposed and confirmed through the experiment.

  • PDF

Experiment Research for Wax Appearance Temperature Determination of Opaque Oil (석유생산 시 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 결정 연구)

  • Kang, Pan-Sang;Hwang, Soon-Hye;Son, Bi-Ryong;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Wax deposition hinders oil flow assurance. Huge amount of money and time were required for mitigation of wax deposition in the oil field. For prediction and mitigation of wax deposition problem, Wax Appearance Temperature(WAT), which is the temperature at which the first wax crystals start to form, needs to be measured in advance. There is a standard method which is optical way to measure the WAT of transparent oil. However, standard method cannot be applied to opaque oil which is common produced oil in the field. In this study, WAT of three transparent oil samples were measured using heat flux variation analysis, viscosity variation analysis and density variation analysis, and compared with WAT measured by standard method. As a result, WAT measured by density variation analysis is the more reliable than heat flux variation analysis and viscosity variation analysis. WAT of two opaque oils were measured using density variation analysis.

Flux Linkage Calculation for 3-D Finite Element Analysis

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hong-Kyu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.13-18
    • /
    • 2002
  • Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration. The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimental one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a coil.

Electrical Parameter Evaluation of 1 MW HTS Motor via Magnetically Stored Energy Calculation

  • Baik, Seung-Kyu;Kwon, Young-Kil;Kim, Ho-Min;Lee, Jae-Deuk;Kim, Yeong-Chun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.13-16
    • /
    • 2010
  • The superconducting synchronous motor or generator mostly has high permeability iron only around outer yoke portion. Therefore, if excitation voltage (Back E.M.F) is calculated from 2 dimensional magnetic field distributions, it can be largely different from actual value due to additional voltage originated from end coils. In order to calculate the excitation voltage more accurately, 3 dimensional magnetic field calculation is necessary for including the end coil effect from large air-gap structure. The excitation voltage can be calculated by stator (armature) coil linkage flux originated from rotor (field) coil excitation, but it is difficult to calculate the flux linkage exactly because of complicated structure of the stator coil. This paper shows a method to calculate the excitation voltage from 3 dimensional magnetic energy that can be calculated directly from volume integration of magnetic flux density and field intensity scalar product through FEM (Finite Element Method) analysis software.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

RABBIT HEATING BY MICROWAVE EXPOSURE AT VARIOUS AMBIENT TEMPERATURES

  • Kolganova, Olga I.;Zhavoronkov, Leonid P.;Petin, Vladislav G.;Kim, Jin-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.99-104
    • /
    • 2010
  • The potential ability of environmental temperature to enhance the effect of microwave radiation (7 GHz) was experimentally studied for rabbit heating after simultaneous application of both agents. The tested ambient temperatures (30 and $38^{\circ}C$) didn't exert a considerable influence upon rabbit heat homeostasis after the used duration of exposure (3 hours and 15 minutes, correspondingly). The synergistic interaction of microwave irradiation and ambient temperature was demonstrated for rabbit heating. Power flux density of microwave irradiation was shown to be a determinant of the synergistic interaction effectiveness. For the fixed ambient temperature ($30^{\circ}C$), the synergism was shown to be observed only within a definite power flux density ($0-100\;mW{\cdot}cm^{-2}$), inside of which there was an optimal intensity ($20\;mW{\cdot}cm^{-2}$), which maximized the synergistic effect. Any deviation of the power flux density from the optimal value resulted in a reduction of the synergy. It is concluded that any assessment of the health or environmental risks should take into account the synergistic interaction between ambient temperature and microwave radiation.

Evaluation of Tidal Stream Resources Near Uido Using an ADCIRC Model (ADCIRC 모델을 이용한 우이도 주변해역의 조류자원 평가)

  • Jeong, Haechang;Nguyen, Manh Hung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • This study evaluated tidal stream energy resources according to tidal flow properties around Uido off the west coast of, Jeollanam-do, South Korea. A feasibility study was first carried out through the collection of bathymetry data and tidal phase information. For this simulation, a depth-averaged 2D ADCIRC (Advanced Circulation) model for real sea situations was applied to a Finite Element Method (FEM) approach for tides given the variation of tidal current speed. Hydrodynamics were simulated with 4 major tidal constituents (M2, S2, K1, and O1) after setting up 4 observation points. From the real depth-averaged model simulation results, it was found that the spring tide Higher High Water (HHW) and tidal current speed values at the 4 observation points were about 2.2 m and 1.33 m/s, respectively. The ADCIRC model results were analyzed with reference to the Korea Hydrographic and Oceanographic Agency's (KHOA) observed data for verification. Furthermore, using topographical characteristics via the Tidal Flux Method (TFM), tidal energy density distribution was calculated, indicating a maximum tidal energy density of about $1.75kW/m^2$ for the 5 assessment areas around Uido. The tidal energy density was evaluated with consideration given to topographical characteristics as well as tidal elevation and tidal current speed to determine an optimum tidal farm candidate.

Design Optimization Process for Electromagnetic Vibration Energy Harvesters Using Finite Element Analysis (유한요소 해석을 이용한 전자기형 진동 에너지 하베스터의 최적설계 프로세스)

  • Lee, Hanmin;Kim, Young-Cheol;Lim, Jaewon;Park, Seong-Whan;Seo, Jongho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.809-816
    • /
    • 2014
  • This paper presents a systematic optimization process for designing an electromagnetic vibration energy harvester using FEA(finite element analysis) to improve computational accuracy and efficiency. A static FEA is used in the optimization process where trend analysis in a short period of time is rather important than precise computation, while a dynamic FEA is used in the verification step for the final result where precise computation is more important. An electromechanical transduction factor can be calculated efficiently by using an approach to use the radial component of magnetic flux density directly instead of an approach to compute the flux density gradient. The proposed optimization process was verified through a case study where simulation and experiment results were compared.

Non-Magnetic Ring Effect for Speed Increase of Solenoid Actuator

  • Sung Baek-Ju;Lee Eun-Woong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.317-323
    • /
    • 2005
  • To increase the operating speed of the solenoid actuator, this paper proposed a modified model using a non-magnetic ring, which is welded on the magnetic guide tube, and also presents the characteristic equations, results of Finite Element Method (FEM) analysis for magnetic flux distribution and density in magnetic flux paths, and computer simulation results for the dynamic characteristics of plunger motion according to the stroke and time variation. As well, we proved the non-magnetic ring effect by experiments using prototypes.

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.