• Title/Summary/Keyword: Energy Efficiency Improvement

Search Result 1,002, Processing Time 0.023 seconds

Alternative Selection Method for Energy Efficiency Improvement of Old Detached House (노후 단독주택의 난방에너지 효율 개선을 위한 대안 선정 방법에 관한 연구)

  • Hwang, Seok-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.45-55
    • /
    • 2019
  • More than 76% of the detached houses in Korea are over 20 years old. These old detached houses have poor energy efficiency. According to the 2017 Housing Census (Statistics Korea), more than 50% of low-income families live in detached houses. Therefore, the improvement of energy efficiency in old detached houses is needed from the viewpoint of energy welfare. The general method of building energy modelling for the verification of energy efficiency is based on the construction year data of "Building Design Criteria for Energy Saving" due to the cost and time involved in collecting the thermal performance data of buildings. There is poor accuracy with the deterioration of long-term aging of building materials. Also, the selection of alternatives for energy performance improvement is based on the items to be applied, not a performance improvement goal. It is difficult to calculate energy performance that reflects variations in various parameters with dynamic energy simulations. In this study, the influence of long-term aging is used to accurately predict the energy performance of old detached houses. The building energy modelling method is called ENERGY#, which is a static analysis method based on ISO13790. Energy performance is evaluated by a combination of input variables including building orientation, insulation of walls and roof, thermal performance of windows and window/wall ratio, and infiltration rate. Finally, this study provides a way to determine alternatives that meet energy performance improvement goals.

A Study on Energy Efficiency Improvement through Building Insulation Diagnosis (건축물 단열 진단을 통한 에너지 효율 개선에 관한 연구)

  • Cho, Kwangmoon
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.9-14
    • /
    • 2021
  • This paper discovers the energy loss factors through the insulation diagnosis of houses or buildings, and proposes directions for energy efficiency improvement. The energy efficiency factor of a building consists of insulation diagnosis, thermal bridge diagnosis, window diagnosis, airtight diagnosis, and equipment diagnosis. Among the residents and facilities in the energy welfare blind spot, an energy efficiency diagnosis was conducted for one senior citizen building located in Naju-si, Jeollanam-do, and energy efficiency diagnosis was conducted after insulation was installed. Energy measurement, diagnosis and analysis were performed using the IoT-based integrated wired/wireless energy diagnosis platform, Energy Finder. As a result of comparison, an overall energy saving rate of 16.38% was achieved. Annual heating energy consumption per unit area decreased from 333.51kWh before construction to 277.35kWh after construction, and annual cooling energy consumption per unit area decreased from 5.51kWh before construction to 5.22kWh after construction. The annual primary energy consumption per unit area decreased from 464.52kWh before construction to 403.69kWh after construction, and the annual energy cost was reduced from 3,063,307.14 won before construction to 2,641,072.49 won after construction. The additional improvement work is needed on the standards affecting energy efficiency other than insulation.

An Architectural Study on the Improvement of Energy Efficiency of Public Institution - Focused on Public Office Buildings Remodeling of Passive Design Elements - (공공기관 에너지 효율등급 향상을 위한 적용 설계요소에 관한 연구 - 공공청사 리모델링시 패시브 디자인요소를 중심으로 -)

  • Cho, Jung-Chul;Park, Jae-Seung
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.4
    • /
    • pp.114-120
    • /
    • 2012
  • There are lots of buildings which were built before the Legislation on building energy rating system. Remodeling of the buildings would be required for an improvement of the building energy rating system was enforced by the government. In the Passive Building Design, Elements which will be used for the remodeling are Insulation, Window, External venetian blind, Heat exchanger. The Purpose of this study is to indicate a Method for the improvement of Energy saving by an analysis of Construction Cost, Cost Evaluation, Energy performance Efficiency in applied design elements. In this study, the remodeling of existing public buildings to improve energy efficiency rating was applied to extract the elements of design-specific energy performance, efficiency, and the application of the designs that has been analyzed. The results were as follows: applying the design-specific cost-effective investment that represents the economy (investment efficiency/%) surveyed the average insulation(7.0%), triple glazed windows(10.1%), double glazed windows(12.1%), external shading(24.5%), and Heat(77.2%) were analyzed in order to be more efficient. Analysis of the basis of information on the existing public buildings to improve energy efficiency rating for the remodeling depending on driving conditions at a degree of individual difference. The main effect, however, depending on economic investment, design elements, heat exchangers, external awning, double glazed windows, triple glazed windows, insulation, is recommended as review of the order shall be determined.

  • PDF

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

A Study on Effect Analysis of Integrated Demand Management According to Energy System Management Model (Energy System Management 모형을 통한 통합 수요관리 효과분석에 관한 연구)

  • Kim, Yong-Ha;Jo, Hyeon-Mi;Kim, Young-Gil;Park, Hwa-Yong;Kim, Hyeong-Jung;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1339-1346
    • /
    • 2011
  • This paper is developed to demand management scenario of energy consumption efficiency improvement, electricity generation efficiency improvement, network efficiency improvement, change of distribution ratio, movement of energy source, change of heating system, put of CHP to quantitatively assess to impact on energy use of demand management at the national level. This scenario can be applied Energy System Management model was developed based on Energy Balance Flow. In addition, effect analysis through built demand management scenario was quantitatively evaluated integrated demand management effectiveness of energy cost saving, CO2 emission reduction and energy savings of national level by calculating to primary energy source usage change in terms of integration demand management effect more often than not a single energy source separated electricity, heat and gas.

Comparison and Analysis of Domestic and Foreign Building Energy Rating Systems (국내외 건물 에너지성능 인증제도 비교, 분석)

  • Song, Seung-Yeong;Lee, Soo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.77-85
    • /
    • 2007
  • With the increase in the demand for sustainable and environment-friendly development all over the world, it becomes an urgent issue for Korea to reduce $CO_2$ emission. Since building industry accounts for about 40% of international energy and resource consumption and $30{\sim}40%$ of $CO_2$ emission, it is essential to prepare for energy-efficient building. This study aims to seek for improvement direction for a domestic Building Energy Efficiency Rating System through the comparison with foreign systems. Two foreign building energy rating systems which have the similar application scope with domestic one, HERS(Home Energy Rating System) and SAP(Standard Assessment Procedure)2005 were selected. As compared with foreign systems, we intended to suggest improvement direction for effective application of Building Energy Efficiency Rating System in Korea.

The research in rationalization of the use of energy in electric power (에너지 이용 합리화를 위한 전기에너지 사용계획 수립에 관한 연구)

  • Kim, Man-Kook;Nam, Si-Bok
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.392-399
    • /
    • 2009
  • This study investigates and analyzed electrical energy curtailment effect by each business department and by energy use efficiency elevation equipment because do an energy use plan that is enforced in each variety business that is developed in domestic by model. When plan the recent electrical energy use with this, I wish to contribute in energy use general planning establishment improvement that is aiming energy efficiency improvement newly by groping improvement plan moment deduce problem. Specially, search present condition and problem by electrical energy curtailment equipment application that probes mass and analyzed, and is applied in present our country according to analysis contents to the latest energy use plan that was enforced on energy use rationality narration but allowed purpose.

  • PDF

Impact of energy efficiency improvement on greenhouse gas in off-season tomato farming: Evidence from Punjab, Pakistan

  • Ali, Qamar;Khan, Muhammad T.I.;Khan, Muhammad N.I.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.207-217
    • /
    • 2017
  • Energy consumption in agriculture is responsible for greenhouse gas emission but it can be reduced after efficient utilization of energy inputs. Therefore, the present study aims for the estimation of energy efficiency and extent of greenhouse gas reduction after benchmarking of inefficient farms in off-season tomato in Punjab province of Pakistan. Primary data were collected from 70 farmers with simple random sampling. By using data envelopment analysis, the average value of technical, pure technical and scale efficiency was 0.80, 0.92 and 0.87, respectively while increasing, constant and decreasing return to scale was observed in 33, 26 and 11 farmers, respectively. Total input energy was reduced by $12,688.91MJ\;ha^{-1}$ (13.89%) if inefficient farms used the energy inputs according to recommendations or benchmarking. A major portion of energy saving comes from fertilizers (68.79%) followed by diesel (15.70%), chemicals (5.91%), machinery (4.37%) and water (4.00%). Total greenhouse gases reduction was $499.17kg\;CO_2\;eq.ha^{-1}$ (14.57%) as a result of improvement in energy efficiency or benchmarking of inefficient farms. Agricultural extension staff should visit the vegetable farms on regular basis and give necessary information about efficient utilization of energy inputs. The government should create awareness about the optimum use of input through seminars and pamphlets.

An Application of Divisia Decomposition Analysis to the Measurement of Thermal Efficiency Improvement of Power Generation (화력발전소 효율개선 측정에 대한 디비지아분해기법의 적용)

  • Choi, Ki-Hong
    • Environmental and Resource Economics Review
    • /
    • v.9 no.5
    • /
    • pp.811-827
    • /
    • 2000
  • Since improved thermal efficiency reduces capacity requirements and energy costs, electricity producers often treat thermal efficiency as a measure of management or economic performance. The conventional measure of the thermal efficiency of a fossil-fuel generation system is the ratio of total electricity generation to the simple sum of energy inputs. As a refined approach, we present a novel thermal efficiency measure using the concept of the Divisia index number. Application of this approach to the Korean power sector shows improvement of thermal efficiency of 1.1% per year during 1970-1998. This is higher than the 0.9% improvement per year given by the conventional method. The difference is attributable to the effect of fuel substitution. In the Divisia decomposition context, we also show the limitations of the popular $T{\ddot{o}}rnqvist$ index formula and the superiority of the Sato-Vartia formula.

  • PDF

Efficiency Improvement Effect Analysis for Marginal Storage Capacity in DC Electric Railway Systems (직류도시철도 시스템에서 저장장치 단위 용량 당 에너지 절감 효과 분석 연구)

  • Lee, Hansang;Yoon, Donghee;Kim, Hyungchul;Joo, Sung-Kwan;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1159-1163
    • /
    • 2014
  • This paper have been dealt with the analysis for energy efficiency improvement effect of unity storage capacity as a part of the energy storage application study to improve energy efficiency in the electric railway systems. Especially, in order to estimate the amount of energy saving according to the variation of power capacity of each storage, the current limit module was mounted on an existing DC electric railway loadflow program which is based on the analysis model for railway system and storages, and combined optimization algorithm to determine optimal voltage boundary.