• Title/Summary/Keyword: Energy Eco Science Center

Search Result 62, Processing Time 0.032 seconds

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies

  • Otari, S.V.;Pawar, S.H.;Patel, Sanjay K.S.;Singh, Raushan K.;Kim, Sang-Yong;Lee, Jai Hyo;Zhang, Liaoyuan;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.4
    • /
    • pp.731-738
    • /
    • 2017
  • A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

CCl4 Activation Mechanisms by Gas-Phase CHBr and CBr2: A Comparative Study

  • Liang, Junxi;Wang, Yanbin;Hasi, Qimeige;Geng, Zhiyuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.426-432
    • /
    • 2013
  • The mechanisms concerning C-Cl activation of $CCl_4$ by $CHBr^{{\cdot}-}$ and $CBr{_2}^{{\cdot}-}$ have been comparatively investigated in theory. Optimized geometries and frequencies of all stationary points on PES are obtained at the BhandHLYP/aug-cc-pVTZ level of theory, and then the energy profiles are refined at the QCISD(T) method with the aug-cc-pVTZ basis by using the BhandHLYP/aug-cc-pVTZ optimized geometries. Our calculated findings suggest that in the title reactions the major mechanisms consist of both Cl-abstraction and $S_N2$ substitution reactions. Also, a succeeding pathway described by electron transfer was revealed before the initial Cl-abstraction products separate. Those are consistent with relevant experimental results.

Overexpression of S-Adenosylmethionine Synthetase in Recombinant Chlamydomonas for Enhanced Lipid Production

  • Jeong Hyeon Kim;Joon Woo Ahn;Eun-Jeong Park;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.310-318
    • /
    • 2023
  • Microalgae are attracting much attention as promising, eco-friendly producers of bioenergy due to their fast growth, absorption of carbon dioxide from the atmosphere, and production capacity in wastewater and salt water. However, microalgae can only accumulate large quantities of lipid in abiotic stress, which reduces productivity by decreasing cell growth. In this study, the strategy was investigated to increase cell viability and lipid production by overexpressing S-adenosylmethionine (SAM) synthetase (SAMS) in the microalga Chlamydomonas reinhardtii. SAM is a substance that plays an important role in various intracellular biochemical reactions, such as cell proliferation and stress response, and the overexpression of SAMS could allow cells to ithstand the abiotic stress and increase productivity. Compared to wild-type C. reinhardtii, recombinant cells overexpressing SAMS grew 1.56-fold faster and produced 1.51-fold more lipids in a nitrogen-depleted medium. Furthermore, under saline-stress conditions, the survival rate and lipid accumulation were 1.56 and 2.04 times higher in the SAMS-overexpressing strain, respectively. These results suggest that the overexpression of SAMS in recombinant C. reinhardtii has high potential in the industrial-scale production of biofuels and various other high-value-added materials.

Nanocellulose-based Polymer Composites with Their Properties and Applications (나노셀룰로오스 기반 고분자 복합소재의 특성 및 응용)

  • Se Hun Kim;Young Jae Kwon;Yamini Sharma;MinYoung Shon;Sangho Cho;Kyung-Youl Baek;Kie Yong Cho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.221-225
    • /
    • 2023
  • Celluloses are naturally occurring polymers that can be easily obtained from various natural sources. Nanocellulose, a form of cellulose, can be derived from regular cellulose and has unique properties that make it ideal for multiple industrial applications. Nanocellulose is a renewable, sustainable, and eco-friendly composite material with exceptional mechanical properties and thermal stability, surpassing metal and ceramic composites. As a result, nanocelluloses are being extensively studied for their potential applications, including fillers, packaging, energy, medicine, and coatings. This review aims to summarize the current research on nanocelluloses and their applications.

Current status on global sweetpotato cultivation and its prior tasks of mass production (세계 고구마 재배현황 및 대량생산의 선결과제)

  • Kim, Ho Soo;Lee, Chan-Ju;Kim, So-Eun;Ji, Chang Yoon;Kim, Sung-Tai;Kim, Jin-Seog;Kim, Sangyong;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.190-195
    • /
    • 2018
  • Sweetpotato [Ipomoea batatas (L.) Lam] represents an attractive starch crop that can be used to facilitate solving global food and environmental problems in the $21^{st}$ century. It can be used as industrial bioreactors to produce various high value-added materials, including bio-ethanol, functional feed, antioxidants, as well as food resources. The non-profit Center for Science in the Public Interest (CSPI) announced sweetpotato as one of the ten 'super foods' for better health, since it contains high levels of low molecular weight antioxidants such as vitamin-C, vitamin-E and carotenoids, as well as dietary fiber and potassium. The United States Department of Agriculture (USDA) also reported that sweetpotato is the best bioenergy crop among starch crops on marginal lands, that does not affect food security. The Food and Agriculture Organization (FAO) estimated that world population in 2050 will be 9.7 billion, and require approximately 1.7 times more food than today. In this respect, sweetpotato will be a solution to solving problems such as food, energy, health, and environment facing the globe in the $21^{st}$ century. In this paper, the current status of resources, and cultivation of sweetpotato in the world was first described. Development of a new northern route of the sweetpotato and its prior tasks of large scale cultivation of sweetpotato, were also described in terms of global food security, and production of high-value added biomaterials.

Manufacturing of Wood Wool Board Mixed with Waste Paper-Mulberry Fiber and Analysis of Humidity Characteristics (폐닥나무 섬유를 혼입한 목모보드 제조 및 조습특성 분석)

  • Kim, Nam-Il;Jo, Jung-Hun;Seo, Sung-Kwan;Lee, Oh-Kyu;Lee, Hyung-Won;Bae, Sung-Chul;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2021
  • The humidity-control function and manufacturing characteristics of wood-wool boards using waste-paper-mulberry fiber were analyzed in this study. For the manufacture of wood-wool boards, the pulverizing times of waste-paper-mulberry fibers were controlled at 30, 60, 120, and 180 s, and the mixing amounts were controlled by adding 0%, 3%, 6%, and 9%, respectively, as compared to cement. Analysis of the moisture adsorption and desorption characteristics of the wood-wool boards controlled for pulverizing time revealed that the wood-wool board with 60 s of pulverized fiber exhibited the best adsorption and desorption performances. It was estimated that the adsorption and desorption performances of the material itself were adequate even when the boards were mixed because of minimal damage to the fiber. In addition, an analysis of the absorption and desorption characteristics of the fiber-mixture-controlled wood-wool boards showed that the 6%-mixed wood-wool board had the best absorption and desorption performances of 291.00 g/m2 and 108.75 g/m2, respectively.

Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

  • Zhang, Han;Liu, Guangliang;Song, Haiyan;Chen, Chunxia;Han, Fuqin;Chen, Ping;Zhao, Zhixi;Hu, Shaozheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3065-3072
    • /
    • 2013
  • Direct synthesis of $H_2O_2$ and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active $Au^0$ species for $H_2O_2$ synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in $H_2O_2$ synthesis as $CH_3OH/H_2O$ ratio of solvent changed. $H_2O_2$ decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of $O_2/H_2$ ratio on $H_2O_2$ concentration, $H_2$ conversion and $H_2O_2$ selectivity revealed a relationship between $H_2O_2$ generation and $H_2$ consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of $O_2/H_2$ ratio and $60^{\circ}C$. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, $H_2$ conversion and oxidative desulfurization selectivity of $H_2$ were presented.

Nutrient Digestibility, Palatability and Stool Quality of Canine Food Including Brown Rice (현미 함유 반려견 사료의 영양소 소화율, 분 특성 및 기호성)

  • Kim, Kyoung-Hoon;Chang, Ju-Song;Oh, Young-Kyoon;Ji, Sang-Yun;Moon, Sang-Ho;Kim, Myeong-Hwa
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.435-440
    • /
    • 2011
  • In this experiment, two inclusion levels (15 and 30% of diets, as-fed basis) of brown rice (BR) were tested against a control diet with 0% BR (51% wheat flour of diet). Six female Maltese (8~9 months age, initial mean body weight of $2.8{\pm}0.3$ kg) were assigned to treatments in replicated $3{\times}3$ Latin square design. Total tract digestibilities of DM, OM, acid hydrolyzed fat, CP and gross energy by dogs fed experimental diets responded quadratically (P<0.01 or <0.05) to BR inclusion levels. Similarly, quadratic responses (P<0.001, P=0.015) were observed for digestible energy and metabolizable energy values, respectively. Wet and dry fecal output also exhibited quadratic responses (P=0.006, P=0.014, respectively) but no differences were observed between control and BR 30% diets. Linear (P=0.008) effect was observed for fecal score in dogs fed BR, and fecal ammonia concentration increased linearly (P=0.001) in response to increasing BR inclusion levels. It seems that the increase in fecal ammonia concentration may be partially related to the decrease tendency (P=0.07) in short-chain fatty acid concentration. In this experiment, inclusion of BR in dog diet did not result in pronounced changes in the digestibility but in fecal score. Although inclusion of BR in diets showed profound positive effect on fecal score, it is confounded by the high inclusion level of poultry offal meal.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

Analysis for Water Vapour Adsorption and Desorption Performance of Waste Paper-Mulberry according to Particle Size Control (폐닥나무의 입도제어에 따른 흡·방습 특성 분석)

  • Jo, Ki-Sic;Kim, Tae-Yeon;Seo, Sung-Kwan;Lee, Oh-Kyu;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.8-17
    • /
    • 2020
  • In this study, adsorption and desorption characteristics of pulverized waste paper-mulberry pellet and bast fiber were measured to confirm the applicability to humidity control products. Paper-mulberry powder was classified by 710-355㎛, 355-100㎛, 100-45㎛ and less than 45㎛ and used in experiment. Specific surface area increased from 1.02㎡/g to 1.35㎡/g as the particle size decreased from 710㎛ to under 45㎛. Adsorption and desorption performance decreased in the order of 355-100㎛, 710-355㎛, 100-45㎛, less than 45㎛ and bast fiber, adsorption content on each particle sizes were 141.1g/㎡, 147.1g/㎡, 135.7g/㎡, 129.0g/㎡ and desorption content were 117.2g/㎡, 123.6g/㎡, 110.2g/㎡, 93.3g/㎡. As a result, adsorption and desorption performance of paper-mulberry powder were superior to those of the bast fiber and these phenomenon can be considered that it caused by pore distribution in pellet and damage of fiber.