• Title/Summary/Keyword: Energy Detection

Search Result 1,984, Processing Time 0.027 seconds

Detection of GPS Clock Jump using Teager Energy (Teager 에너지를 이용한 GPS 위성 시계 도약 검출)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we propose a simple technique for the detection of a frequency jump in the GPS clock behavior. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term and a non-periodic frequency drift in the short term, showing a sudden frequency jump occasionally. As satellite clock anomalies influence on GPS measurements, it requires to develop a real time technique for the detection of the clock anomaly on the real-time GPS precise point positioning. The proposed technique is based on Teager energy which is mainly used in the field of various signal processing for the detection of a specific signal or symptom. Therefore, we employed the Teager energy for the detection of the jump phenomenon of GPS satellite atomic clocks, and it showed that the proposed clock anomaly detection strategy outperforms a conventional detection methodology.

The Study for Improved Efficiency of the Detection of Radiation Sources Distribution using Image Processing (영상처리기반 감마선 분포탐지 효율 개선에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho;Kim, Jong-yeol;Jeong, Sang-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.780-781
    • /
    • 2016
  • The stereo radiation detection system detects gamma ray source and measures the two dimensional distribution image based on the detection result. Then the system is implemented to measure the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we reduced the time for a gamma-ray scan space detection through image processing algorithms. In addition, it combines radiation and visible light images. Then we conducted a study for improving the distribution of gamma-ray detection efficiency through the stereo calibration using a 3D visualization. As a result, we obtain an improved detection time by more than 30% and have acquired a visible image with a 3D monitor.

  • PDF

Effects of Rectifier and Copper Grid Interference on the Detection Reliability of Coating Flaws on Buried Pipes (매설 배관 피복 결함 탐상 정확도에 미치는 인접 정류기 및 접지 구리망 간섭의 영향)

  • Kim, M.G.;Lim, B.T.;Kim, K.T.;Chang, H.Y.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.211-223
    • /
    • 2020
  • The external corrosion of buried piping can be controlled using both coating and cathodic protection. Several factors are involved in the damage and deterioration of the coating on pipes. There are many detection methods for coating defects on pipes and the direct current voltage gradient (DCVG) method is one of the most powerful methods. However, the detection reliability of DCVG can be affected by interferences such as stray current, metal objects connected to rectifiers, and copper grids. Therefore, this study focused on the interference effects of rectifiers and a copper grid on the reliability of coating flaw detection. As the length of the interference pipe connected to the rectifier increased, the reliability decreased. In contrast, as the distance between the pipe and the copper grid increased, the reliability of the coating flaw detection increased. The detection results produced by the DCVG method were discussed using current and potential simulations for a pipe with a rectifier and copper grid interference in the soil.

Anomaly Detection and Diagnostics (ADD) Based on Support Vector Data Description (SVDD) for Energy Consumption in Commercial Building (SVDD를 활용한 상업용 건물에너지 소비패턴의 이상현상 감지)

  • Chae, Young-Tae
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • Anomaly detection on building energy consumption has been regarded as an effective tool to reduce energy saving on building operation and maintenance. However, it requires energy model and FDD expert for quantitative model approach or large amount of training data for qualitative/history data approach. Both method needs additional time and labors. This study propose a machine learning and data science approach to define faulty conditions on hourly building energy consumption with reducing data amount and input requirement. It suggests an application of Support Vector Data Description (SVDD) method on training normal condition of hourly building energy consumption incorporated with hourly outdoor air temperature and time integer in a week, 168 data points and identifying hourly abnormal condition in the next day. The result shows the developed model has a better performance when the ${\nu}$ (probability of error in the training set) is 0.05 and ${\gamma}$ (radius of hyper plane) 0.2. The model accuracy to identify anomaly operation ranges from 70% (10% increase anomaly) to 95% (20% decrease anomaly) for daily total (24 hours) and from 80% (10% decrease anomaly) to 10%(15% increase anomaly) for occupied hours, respectively.

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Advantages of Acoustic Leak Detection System Development for KALIMER Steam Generators

  • Kim, Tae-Joon;Valery S. Yughay;Hwang, Sung-Tai;Chai, Jeong-Kyung;Choi, Jong-Hyeun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2001
  • For sodium cooling liquid metal reactors during the last 25 years, it was most important to verify the safety of the steam generator, which absolutely requires a water leak detection system with fine sensitivity and response. This study describes the structure and leak classification of the HAMMER (Korea Advanced Liquid Metal Reactor) steam generator, compared with other classifications, and explains the effects of leak development. The requirements and experimental situations for the development of the KALIMER acoustic leak detection system (KADS) which detects micro leaks, not intermediate leaks, are introduced. We proposed four frequency bands, 1∼8kHz, 8∼20kHz, 20∼40kHz and 40∼200kHz, split effectively for analyzing the detected acoustic leak signals obtained from the sodium-water reaction model or water model in the mock-up system.

  • PDF

Robust Endpoint Detection Algorithm For Speaker Verification (화자인식을 위한 강인한 끝점 검출 알고리즘)

  • Jung Dae Sung;Kim Jung Gon;Kim Hyung Soon
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.137-140
    • /
    • 2003
  • In this paper, we propose a robust endpoint detection algorithm for speaker verification. Proposed algorithm uses energy and cepstral distance parameters, and it replaces the detected endpoints with endpoints of voiced speech, when the estimated signal-to-noise ratio (SNR) is low. Experimental results show that proposed algorithm is superior to energy-based endpoint detection algorithm.

  • PDF

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Evaluation of Edge-Based Data Collection System through Time Series Data Optimization Techniques and Universal Benchmark Development (수집 데이터 기반 경량 이상 데이터 감지 알림 시스템 개발)

  • Woojin Cho;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.453-458
    • /
    • 2024
  • Due to global issues such as climate crisis and rising energy costs, there is an increasing focus on energy conservation and management. In the case of South Korea, approximately 53.5% of the total energy consumption comes from industrial complexes. In order to address this, we aimed to improve issues through the 'Shared Network Utility Plant' among companies using similar energy utilities to find energy-saving points. For effective energy conservation, various techniques are utilized, and stable data supply is crucial for the reliable operation of factories. Many anomaly detection and alert systems for checking the stability of data supply were dependent on Energy Management Systems (EMS), which had limitations. The construction of an EMS involves large-scale systems, making it difficult to implement in small factories with spatial and energy constraints. In this paper, we aim to overcome these challenges by constructing a data collection system and anomaly detection alert system on embedded devices that consume minimal space and power. We explore the possibilities of utilizing anomaly detection alert systems in typical institutions for data collection and study the construction process.