• 제목/요약/키워드: Energy Deposition

검색결과 1,905건 처리시간 0.026초

Fabrication of Thin Solid Oxide Film Fuel Cells

  • Jee, Young-Seok;Chang, Ik-Whang;Son, Ji-Won;Lee, Jong-Ho;Kang, Sang-Kyun;Cha, Suk-Won
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.82-85
    • /
    • 2010
  • Recently, thin film processes for oxides and metal deposition, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), have been widely adapted to fabricate solid oxide fuel cells (SOFCs). In this paper, we presented two research area of the use of such techniques. Gadolinium doped ceria (GDC) showed high ionic conductivity and could guarantee operation at low temperature. But the electron conductivity at low oxygen partial pressure and the weak mechanical property have been significant problems. To solve these issues, we coated GDC electrolyte with a nano scale yittria-doped stabilized zirconium (YSZ) layer via atomic layer deposition (ALD). We expected that the thin YSZ layer could have functions of electron blocking and preventing ceria from the reduction atmosphere. Yittria-doped barium zirconium (BYZ) has several orders higher proton conductivity than oxide ion conductor as YSZ and also has relatively high chemical stability. The fabrication processes of BYZ is very sophisticated, especially the synthesis of thin-film BYZ. We discussed the detailed fabrication processes of BYZ as well as the deposition of electrode. This paper discusses possible cell structure and process flow to accommodate such films.

갈륨이 첨가된 산화아연막의 코팅에 따른 미세팁 구조 탄소나노튜브의 전계방출 특성 및 장시간 안정성 (Field-emission Properties and Long-term Stability of Tip-type Carbon Nanotubes Coated with Gallium-incorporated Zinc Oxide Films)

  • 김종필;노영록;조경철;이상렬;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.65-69
    • /
    • 2009
  • Carbon nanotubes (CNTs) were coated with undoped zinc oxide (ZnO) or 5 wt% gallium-incorporated ZnO (GZO) using various deposition conditions. The CNTs were directly grown on conical-type tungsten substrates at $700^{\circ}C$ using inductively coupled plasma-chemical vapor deposition. The pulsed laser deposition technique was used to deposit the ZnO and GZO thin films with very low stress. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy were used to monitor the variations in the morphology and microstructure of CNTs prior to and after ZnO or GZO coating. The formation of ZnO and GZO films on CNTs was confirmed using energy-dispersive x-ray spectroscopy. In comparison to the as-grown (uncoated) CNT emitter, the CNT emitter that was coated with a thin (10 nm) GZO film showed remarkably improved field emission characteristics, such as the emission current of $325\;{\mu}A$ at 1 kV and the threshold field of $1.96\;V/{\mu}m$ at $0.1\;{\mu}A$, and it also exhibited the highly stable operation of emission current up to 40 h.

  • PDF

결정질 실리콘 태양전지 적용을 위한 ALD-Al2O3 패시베이션 막의 산화질화막 적층 특성 (Characteristics on Silicon Oxynitride Stack Layer of ALD-Al2O3 Passivation Layer for c-Si Solar Cell)

  • 조국현;조영준;장효식
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.233-237
    • /
    • 2015
  • Silicon oxynitride that can be deposited two times faster than general SiNx:H layer was applied to fabricate the passivation protection layer of atomic layer deposition (ALD) $Al_2O_3$. The protection layer is deposited by plasma-enhanced chemical vapor deposition to protect $Al_2O_3$ passivation layer from a high temperature metallization process for contact firing in screen-printed silicon solar cell. In this study, we studied passivation performance of ALD $Al_2O_3$ film as functions of process temperature and RF plasma effect in plasma-enhanced chemical vapor deposition system. $Al_2O_3$/SiON stacks coated at $400^{\circ}C$ showed higher lifetime values in the as-stacked state. In contrast, a high quality $Al_2O_3$/SiON stack was obtained with a plasma power of 400 W and a capping-deposition temperature of $200^{\circ}C$ after the firing process. The best lifetime was achieved with stack films fired at $850^{\circ}C$. These results demonstrated the potential of the $Al_2O_3/SiON$ passivated layer for crystalline silicon solar cells.

EPD를 이용한 IT-SOFC용 SDC 전해질 필름의 제조 (Preparation of SDC electrolyte film for IT-SOFCs by electrophoretic deposition)

  • 이경섭;김영순;조철기;신형식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.158-158
    • /
    • 2009
  • The electrophoretic deposition(EPD) technique with a wide range of novel applications in the processing of advanced ceramic materials and coatings, has recently gained increasing interest both in academic and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. For example, deposition can be made on flat, cylinderical or any other shaped substrate with only minor charge in electrode design and positioning[1]. The synthesis of the nano-sized Ce0.2Sm0.8O1.9(SDC)particles prepared by aurea based low temperature hydrothermal process was investigated in this study[2].When we made the SDC nanoparticles, changed the time of synthesis of the SDC. The SDC nanoparticles were characterized with field-emission scanning electron microscope(FESEM), energy dispersive X-ray analysis(EDX), and X-ray diffraction(XRD). And also we researched the results of our investigation on electrophoretic deposition(EPD) of the SDC particles from its suspension in acetone solution onto a non-conducting NiO-SDC substrate. In principle, it is possible to carry out electrophoretic deposition on non-conducting substrates. In this case, the EPD of SDC particles on a NiO-SDC substrate was made possible through the use of a adequately porous substrate. The continuous pores in the substrates, when saturated with the solvent, helped in establishing a "conductive path" between the electrode and the particles in suspension[3-4]. Deposition rate was found to increase its increasing deposition time and voltage. After annealing the samples $1400^{\circ}C$, we observed that deposited substrate.

  • PDF

지하수 유동 특성을 이용한 심층처분의 처분공 배치 방안 (Arrangement of Disposal Holes According to the Features of Groundwater Flow)

  • 고낙열;백민훈
    • 방사성폐기물학회지
    • /
    • 제14권4호
    • /
    • pp.321-329
    • /
    • 2016
  • 가상의 심층처분 부지의 지하수 유동 모의 결과를 통해 처분 심도에 위치하는 처분공 지점에서의 지하수 유동량 및 해당 지점에서 지표 환경까지 지하수가 유동하는 경로의 거리와 경로를 통과하는데 걸리는 시간에 대한 수량적, 공간적 분포를 분석하여 그 결과를 처분공의 위치 결정에 이용할 수 있는 방안을 제시하였다. 지하수 유동량은 처분공 위치에서 계산된 지하수위를, 유동 거리와 경과 시간은 입자 추적 기법(particle tracking)을 이용하여 계산하였다. 지하수 유동량 및 유동 거리와 경과 시간의 공간적 분포를 이용하여 처분시설의 성능을 유지하는데 상대적으로 유리한 위치를 선별하고 특정한 제한 조건이 주어진 경우 제외되어야 하는 처분공 위치를 결정하여 처분공 배치에 이용할 수 있은 방안을 제시하였다. 또한 세 가지 정보를 함께 고려하여, 추가적인 처분공의 위치를 선정할 필요가 있을 경우 보다 유리한 확장 방향을 제시할 수 있는 방안도 논의되었다. 처분 심도에서의 지하수 유동 정보를 활용하여 처분공의 배치 방안을 결정하는 것은 처분시설의 성능 및 안전성 확보를 위해 기여할 수 있을 것으로 생각된다.

Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터 (p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process)

  • 이승민;장성철;박지민;윤순길;김현석
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.