• Title/Summary/Keyword: Energy Conversion System

Search Result 1,074, Processing Time 0.023 seconds

A study on a Fuel Cells Power Conditioner for Electric Power Source of Electrical Equipment. (전기설비전원용 연료전지 전력제어기에 관한 연구)

  • 윤병도;김윤호;최원범;김춘삼;김찬기
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.59-63
    • /
    • 1991
  • Fuel cells power generating system converts the chemical energy of a fuel directly into electrical energy. The merits of fuel cells power generating system are pollution free and high energy conversion efficiency. Fuel cells power generating system includes the DC/AC converter. DC source obtained from stack is converted to the constant AC voltage or current by the inverter. In this paper, the power conditioner for the fuel cells power generating system are discribed. Some experiments are performed, for the power conversion system. The results show that the implimented experimental system may be applied to the practical fuel cells power generating system.

  • PDF

A Study on the Control of Hydrodynamic forces for Wave Energy Conversion Device Operating in Constantly Varying Ocean Conditions (파력 발전기에 미치는 유체력의 제어에 관한 연구)

  • 김성근;박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.4
    • /
    • pp.41-52
    • /
    • 1990
  • Due to the constantly varying sea-state with which any wave energy conversion device must contend in order to extract energy efficiently , the ability to control the device's position relative to the incident waves is critical in achieving the creation of a truly functional and economical wave energy device. In this paper, the authors will propose methodology based on the theory of a variable structure system to utilize a three dimensional source distribution as a model to estimate anticipated surge, sway and yaw of a wave energy conversion device relative to varying angles and characteristics of incident waves and there from derive a feedback to a sliding mode controller which would reposition the device so as to maximize its ability to extract energy from waves in constantly varying ocean conditions.

  • PDF

Modeling and Control of a Small Wind Energy Conversion System (소규모 풍력 에너지 변환 시스템의 모델링과 제어에 관한 연구)

  • Kim Sil-Keun;Hong Jeng-Pyo;Hong Soon-Il
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1510-1512
    • /
    • 2004
  • 본 연구는 농형 유도 발전기와 양방향 PWM 인버터를 가진 WECS (Wind Energy Conversion System)시스템을 모델링하고 이 모델에 기초하여 제어 법칙을 제안하였다. 제어 법칙은 풍속 따라 작용하는 최적 팁 속도비에 의해 효율이 최대가 되도록 제어하는 것이다. WECS은 바람의 변동이 있어도 최적치에 팁 속도비를 유지하기 위해 터빈의 회전 속도 제어하여 행한다.

  • PDF

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

Biomass to Energy: Renewable Fuel Production Processes for Clean Combustion (바이오매스 에너지화: 청정 연소를 위한 신재생 연료 생산 공정)

  • Jeong, Jaeyong;Kim, Youngdoo;Yang, Won;Lee, Uendo;Jeong, Suhwa;Bang, Byungryul;Moon, Jihong;Hwang, Jeongho;Chang, Wonsuk
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.285-285
    • /
    • 2015
  • Utilization of biomass as a substitute fuel for conventional energy systems have been grown larger everyday in the world. In particular, co-firing of biomass in a large coal power plant are common in Korea after the introduction of RPS since 2012, and the application of biomass-derived fuel is now spreading to district heating and power, industrial energy supply, and transportation sectors. For biomass to energy, appropriate conversion process is needed to satisfy the fuel requirements of a specific energy system. In this study, various kinds of thermochemical conversion technologies will be presented for renewable fuel productions from biomass.

  • PDF

Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium- and Sodium-Ion Batteries

  • Kim, Hyunwoo;Kim, Dong In;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.32-53
    • /
    • 2022
  • Although lithium-ion batteries are currently the most reliable power supply system for various mobile applications, further improvement in energy density is still required as the need for batteries in large energy-consuming devices is rapidly growing. However, in the anode, the most widely commercialized graphite-based anode materials almost face theoretical limitations. In addition, sodium-ion batteries have been actively studied to replace expensive charge carriers with cheaper ones. Accordingly, conversion-based materials have been extensively studied as high-capacity anode materials in both lithiumion batteries and sodium-ion batteries because their theoretical capacity is twice or thrice higher than that of insertion-based materials. This review will provide a comprehensive understanding of conversion-based materials, including basic charge storage behaviors, critical drawbacks that should be overcome, and practical material design for high-performance.

Energy Conversion Efficiency Improvement of Piezoelectric Micropower Generator Adopting Low Leakage Diodes (저누설 다이오드를 사용한 저전력 압전발전기의 효율 개선에 관한 연구)

  • Kim, Hye-Joong;Kang, Sung-Muk;Kim, Ho-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.938-943
    • /
    • 2007
  • In this paper, we show that, in case of piezoelectric micropower generator, just replacing Schottky diodes in the bridge rectifier with ultra-low reverse leakage current diodes improves the mechanical-to-electrical energy conversion efficiency by more than 100%. Experimental and PSPICE simulation results show that, due to the ultra-low leakage current, the charging speed of the circuit employing PAD1 is higher than that of the circuit employing Schottky diodes and the saturation voltage of the circuit employing PAD1 is also higher. This study suggests that , when the internal impedance of source is very large (a few tens of $M{\Omega}$) such that maximum charging current is a few microamperes or less, in order to realize literally the energy scavenging system, ultra-low reverse leakage current diodes should be used for efficient energy conversion. Since low-level vibration is ubiquitous in the environment ranging from human movement to large infrastructures and the mechanical-to-electrical energy conversion efficiency is much more critical for use of these vibrations, we believe that the improvement in the efficiency using ultra-low leakage diodes, as found in this work, will widen greatly the application of piezoelectric micropower generator.

A Protection Circuit for the Power Supply of a Gas Discharge Lamp

  • Kim, Ho-Sung;Kim, Jong-Hyun;Baek, Ju-Won;Yoo, Dong-Wook;Jung, Hye-Man;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.777-783
    • /
    • 2010
  • In order to drive gas discharge lamps, DC-AC converters with a LCC resonant tank, whose output voltage is adjusted by a variable frequency control are frequently used. However, when they are activated by varying the operating frequency, converters are frequently damaged by unstable operation, due to the rising and falling of the operating frequency near the resonant frequency. To solve this problem, a simple protection circuit for the power supply of a gas discharge lamp is proposed in this paper. This circuit senses the primary current of the main transformer. Using this protection circuit, the operating frequency of the lamp driving inverter system is kept close to and on the right side of the resonant frequency and the inverter is always operated in the ZVS condition. The resulting stable variable frequency operation allows various gas discharge lamps to be tested without the risk of damaging the main switches, because the protection circuit can protect the power MOSFETs of bridge converters from abnormal conditions. The validity and effectiveness of the proposed protection circuit are verified through the experimental results.

Design and performance evaluation of ortho-para H2 conversion equipment (Ortho-para 수소변화장치의 설계 및 성능평가)

  • Baik, J.H.;Kang, B.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.3
    • /
    • pp.93-100
    • /
    • 1998
  • The ortho-para $H_2$ catalytic conversion equipment has been developed to reduce the evaporation loss from stored liquid hydrogen. The ortho-para $H_2$ conversion heat is evaluated at liquid nitrogen temperature. This problem is of particular interest in the design of the ortho-para $H_2$ converter in a hydrogen liquefaction system. The ortho-para $H_2$ conversion equipment consists of a catalytic converter, a precooler, and a liquid nitrogen bath. 30-90 cc of $Fe(OH)_3$ are employed as a catalyst in the present converter. The conversion heat and conversion effectiveness are evaluated when mass flow rate of hydrogen is in the range of 0.05-l.6 g/min. It is found that the ortho-para conversion heat is increased while conversion effectiveness is decreased as the mass flow rate of hydrogen is increased. Both the ortho-para conversion heat and conversion effectiveness are increased with an increase in the amount of the catalyst.

  • PDF

Adaptive On-line State-of-available-power Prediction of Lithium-ion Batteries

  • Fleischer, Christian;Waag, Wladislaw;Bai, Ziou;Sauer, Dirk Uwe
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.516-527
    • /
    • 2013
  • This paper presents a new overall system for state-of-available-power (SoAP) prediction for a lithium-ion battery pack. The essential part of this method is based on an adaptive network architecture which utilizes both fuzzy model (FIS) and artificial neural network (ANN) into the framework of adaptive neuro-fuzzy inference system (ANFIS). While battery aging proceeds, the system is capable of delivering accurate power prediction not only for room temperature, but also at lower temperatures at which power prediction is most challenging. Due to design property of ANN, the network parameters are adapted on-line to the current battery states (state-of-charge (SoC), state-of-health (SoH), temperature). SoC is required as an input parameter to SoAP module and high accuracy is crucial for a reliable on-line adaptation. Therefore, a reasonable way to determine the battery state variables is proposed applying a combination of several partly different algorithms. Among other SoC boundary estimation methods, robust extended Kalman filter (REKF) for recalibration of amp hour counters was implemented. ANFIS then achieves the SoAP estimation by means of time forward voltage prognosis (TFVP) before a power pulse occurs. The trade-off between computational cost of batch-learning and accuracy during on-line adaptation was optimized resulting in a real-time system with TFVP absolute error less than 1%. The verification was performed on a software-in-the-loop test bench setup using a 53 Ah lithium-ion cell.