• 제목/요약/키워드: Energy Consumption Prediction

검색결과 189건 처리시간 0.025초

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

냉각팬 전동화에 따른 시내버스 연비효과 예측 (Prediction of the Effect of Cooling Fan Electrification on City Bus)

  • 이용규;박진일;이종화
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.908-912
    • /
    • 2013
  • Because of their longer operating times and larger size relative to conventional fans, the cooling fans mounted in buses consume larger amounts of energy. Most of the cooling fans mounted in a bus are connected to the engine by a viscous clutch. A viscous cooling fan's speed is determined by its fluid temperature, which is affected by the air flow through the radiator. The fan does not react immediately to the coolant temperature and in doing so causes unnecessary energy consumption. Therefore, the fuel economy of buses using viscous fans can be improved by changing to an electric cooling fan design, which can be actively controlled. In addition, electric power consumption is increased by using electric cooling fans. Thus, when electric fans are applied in conjunction with the alternator management system (AMS), the fuel economy is further enhanced. In this study, simulations were performed to predict coolant temperature and cooling fan speeds. Simulations were performed for both viscous and electric cooling fans, and power consumption was calculated. Additionally, fuel economy was calculated applying both the alternator management system and the electric cooling fan.

간헐난방주택에 대한 외기온도 예측제어 적용 연구 (Application of the Outdoor Air Temperature Prediction Control for Intermittent Heating Residences)

  • 태춘섭;조성환;이충구
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.682-691
    • /
    • 2001
  • Most of radiant floor heating systems are operated in the intermittent heating mode in Korea. The application possibility of predictive suboptimal control for Koran residential house was investigated by computer simulation and experiment. For this study, TRNSYS program was used and an experimental facility consisting of tow rooms ($3\times4.4\times2.8 m$) identical in construction was built. The facility enabled simultaneous comparison of two different control method. And real multi residential hose was investigated. Results showed that outdoor air temperature prediction control was superior to the conventional control for radiant floor heating system operated in the intermittent heating mode. New control system resulted in good thermal environment and les energy consumption.

  • PDF

집단에너지 공동주택의 사용자 측 열부하 예측에 의한 열공급제어 알고리즘 개발에 관한 연구 (A Study on Development of Heat Supply Control Algorithm of Consumer Group Energy Apartment Building by Prediction of Heating Load)

  • 변재기;이규호;최영돈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1300-1305
    • /
    • 2009
  • The energy conservation in buildings affects environmental preservation as well as economic benefits, and creates the comfortable indoor environment set for the inhabitants. Especially, apartment buildings show ever-increasing energy consumption with large-sized and high-class tendency, thus energy saving counterplans are needed. The present study is to develop an optical control algorithm by using heating load curve according to the outdoor temperature change. Heating load analysis should be performed before the present method can be applied. Dynamic heating load simulations are performed by resistance-capacitance method. Results show that heating load decrease linearly according to the increase of outdoor temperature.

  • PDF

대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구 (The Prediction of the location and electric Power for Small Wind Powers in the H University Campus)

  • 조관행;윤재옥
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.

지역난방 동절기 공동주택 온수급탕부하의 LS-SVM 기반 모델링 (LS-SVM Based Modeling of Winter Time Apartment Hot Water Supply Load in District Heating System)

  • 박영칠
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.355-360
    • /
    • 2016
  • Continuing to the modeling of heating load, this paper, as the second part of consecutive works, presents LS-SVM (least square support vector machine) based model of winter time apartment hot water supply load in a district heating system, so as to be used in prediction of heating energy usage. Similar, but more severely, to heating load, hot water supply load varies in highly nonlinear manner. Such nonlinearity makes analytical model of it hardly exist in the literatures. LS-SVM is known as a good modeling tool for the system, especially for the nonlinear system depended by many independent factors. We collect 26,208 data of hot water supply load over a 13-week period in winter time, from 12 heat exchangers in seven different apartments. Then part of the collected data were used to construct LS-SVM based model and the rest of those were used to test the formed model accuracy. In modeling, we first constructed the model of district heating system's hot water supply load, using the unit heating area's hot water supply load of seven apartments. Such model will be used to estimate the total hot water supply load of which the district heating system needs to provide. Then the individual apartment hot water supply load model is also formed, which can be used to predict and to control the energy consumption of the individual apartment. The results obtained show that the total hot water supply load, which will be provided by the district heating system in winter time, can be predicted within 10% in MAPE (mean absolute percentage error). Also the individual apartment models can predict the individual apartment energy consumption for hot water supply load within 10% ~ 20% in MAPE.

저밀도 센서 네트워크 환경에서 다항 회귀 예측 기반 이동 객체 추적 기법 (Moving Object Tracking Scheme based on Polynomial Regression Prediction in Sparse Sensor Networks)

  • 황동교;박혁;박준호;성동욱;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제12권3호
    • /
    • pp.44-54
    • /
    • 2012
  • 무선 센서 네트워크 환경에서 이동 객체 추적 기법은 환경 모니터링이나 군사 지역에서 적의 이동을 추적하는 실제 응용을 위한 핵심적인 기반 기술이다. 기존 연구에서는 저밀도를 갖는 실제 센서 네트워크 환경에 의해 발생되는 감지 공백 영역을 고려하지 않았다. 따라서 많은 이동 객체 추적 실패가 발생하여 에너지 소모가 증가하였다. 이러한 문제를 해결하기 위해 본 논문에서는 저밀도 환경과 감지 공백 영역을 고려한 이동 객체 추적 기법을 제안한다. 제안하는 기법은 다항 회귀 분석을 이용해 객체의 경로를 예측하여 최소한의 센서 노드를 활성화시킨다. 또한 이동 객체 추적 실패가 발생할 경우 감지 공백 영역의 경계 노드만을 활성화 시키는 객체 추적 복구 기법을 수행한다. 이를 통해, 제안하는 기법은 에너지 소모량을 줄이고 감지 공백 영역 안에서도 높은 예측 정확도를 보장한다. 제안하는 기법이 기존 기법에 비해 이동 객체 추적에 소모되는 에너지를 평균 약 47% 감소시켰고, 센서 노드가 낮은 밀도로 배치된 상황에서 발생하는 감지 공백 영역에서도 평균 약 91%의 예측 정확도를 보였다.

Instruction Flow based Early Way Determination Technique for Low-power L1 Instruction Cache

  • Kim, Gwang Bok;Kim, Jong Myon;Kim, Cheol Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.1-9
    • /
    • 2016
  • Recent embedded processors employ set-associative L1 instruction cache to improve the performance. The energy consumption in the set-associative L1 instruction cache accounts for considerable portion in the embedded processor. When an instruction is required from the processor, all ways in the set-associative instruction cache are accessed in parallel. In this paper, we propose the technique to reduce the energy consumption in the set-associative L1 instruction cache effectively by accessing only one way. Gshare branch predictor is employed to predict the instruction flow and determine the way to fetch the instruction. When the branch prediction is untaken, next instruction in a sequential order can be fetched from the instruction cache by accessing only one way. According to our simulations with SPEC2006 benchmarks, the proposed technique requires negligible hardware overhead and shows 20% energy reduction on average in 4-way L1 instruction cache.

Enhanced OLSR Routing Protocol Using Link-Break Prediction Mechanism for WSN

  • Jaggi, Sukhleen;Wasson, Er. Vikas
    • Industrial Engineering and Management Systems
    • /
    • 제15권3호
    • /
    • pp.259-267
    • /
    • 2016
  • In Wireless Sensor Network, various routing protocols were employed by our Research and Development community to improve the energy efficiency of a network as well as to control the traffic by considering the terms, i.e. Packet delivery rate, the average end-to-end delay, network routing load, average throughput, and total energy consumption. While maintaining network connectivity for a long-term duration, it's necessary that routing protocol must perform in an efficient way. As we discussed Optimized Link State Routing protocol between all of them, we find out that this protocol performs well in the large and dense networks, but with the decrease in network size then scalability of the network decreases. Whenever a link breakage is encountered, OLSR is not able to periodically update its routing table which may create a redundancy problem. To resolve this issue in the OLSR problem of redundancy and predict link breakage, an enhanced protocol, i.e. S-OLSR (More Scalable OLSR) protocol has been proposed. At the end, a comparison among different existing protocols, i.e. DSR, AODV, OLSR with the proposed protocol, i.e. S-OLSR is drawn by using the NS-2 simulator.

머신러닝 기반 공장 HVAC 시스템의 에너지 효율화 운영 시뮬레이션 (Energy-Efficient Operation Simulation of Factory HVAC System based on Machine Learning)

  • 이석주;다어반권
    • 한국산업정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.47-54
    • /
    • 2024
  • 현재, 전세계적으로 에너지 자원은 점차적으로 감소하고 있음에도 불구하고 에너지 수요 및 소비는 지속적으로 증가하고 있다. 이에 따른 에너지 자원을 대체하기 위한 범국가적인 노력 및 연구가 수행되고 있다. 에너지 수요에 따른 공급의 증가 뿐만 아니라 에너지를 효율적으로 소비하는 것은 현 에너지 부족 현상을 해결하기 위한 적절한 수단이 될 수 있다. 본 연구는 에너지를 가장 많이 소비하는 제조 공장의 에너지를 효율적으로 소비할 수 있는 방법을 시뮬레이션하고 분석하였다. 제조 공장에서 가장 많은 에너지를 소비하는 HVAC (Heating, Ventilating, and Air Conditioning) 시스템의 효율적인 운전을 위해 온도기반의 제어를 통한 공장의 에너지 최적화 시뮬레이션을 수행하였다. 이를 기반으로 실제 공장의 온도와 전력 데이터를 이용하여 머신러닝 알고리즘을 적용하고 공장 온도를 예측하였다. 또한 예측 온도를 이용한 제어 시스템 시뮬레이션으로 공장 에너지의 소비패턴을 분석하고 에너지(전력량) 소비량을 감소할 수 있는 운전 모델을 제안하였다. 공장 에너지 패턴에 있어 HVAC 시스템의 예측 기반 프리 쿨링을 통한 온도제어 알고리즘은 기존 대비 10% 이상의 에너지 절감 효과를 보여 준다. 이 결과는 HVAC 시스템의 최적 제어가 공장 에너지 소비를 절감할 수 있음을 나타낸다. 향후 본 제어 시스템의 알고리즘은 실제 공장의 최적 제어에 적용되어 에너지 소비 절감 운전을 수행할 예정이다.