• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,782, Processing Time 0.037 seconds

Washing Efficiency of Drum Washing Machine Using Steam Jet System (스팀분사 방식을 사용한 스팀 드럼세탁의 세탁성능)

  • Jung, Sun-Young;Jang, Jeong-Dae;Park, Seok-Kyu;Jeong, Seong-Hae
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.134-138
    • /
    • 2006
  • The washing efficiency of two types of washing machine- drum(drum washing) and drum using steam jet system(steam drum washing) was studied. The purpose of this paper is to clarify the performance of new steam drum washing. The relationship between washing temperature and washing efficiency(reflectance(%)) by soil removal, and that between washing temperature and electric energy consumption, Fabric damage evaluated by Danish wear method, Fabric shrinkage(%) during laundering were investigated, and compared with those in drum washing machine. Washing efficiency of steam drum washing according to washing temperature is better than that of drum washing. Electric energy consumption and fabric damage in steam drum washing are lower than those of drum washing. Fabric damage increased as washing temperature increased. Shrinkage of fabrics in steam drum washing and drum washing are about same. Therefore, we assumed that in the case of steam drum washing using steam jet system, washing efficiency remarkably increased, and fabric damage decreased, even with a lot of saving in given electric energy and water used.

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Design and Implementation of Ship Energy Efficiency Monitoring System (선박 에너지 효율 모니터링 시스템 설계 및 구현)

  • Kim, Yong-dae;Yoon, Hyeon-kyu;Kang, Nam-seon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.408-416
    • /
    • 2016
  • This study designed a ship energy efficiency monitoring system based on a ship application system that provides maritime services by utilizing data collected onboard, and a ship-land integration system for integrated management and exchange of maritime data. The ship energy efficiency monitoring system was developed as a Windows application program and designed to use file based EDI communications. Its main functions include route planning to minimize fuel consumption, monitoring of energy consumption and gas emissions, analysis of ship energy efficiency and other data analysis. The system has been successfully implemented in actual ships.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

A Comparative Study on Heating Energy Consumption of Multi-Family Apartment using EnergyPlus and eQUEST (EnergyPlus와 eQUEST를 이용한 공동주택의 난방에너지소비량 비교분석에 관한 연구)

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-So
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.48-56
    • /
    • 2013
  • Energy consumption analysis of multi-family apartment is an important area of research for the design of energy-saving housing. In this study, we selected a universal type of Flat-type apartments and analyzed the heating energy consumption of variables such as U-value, G-value, infiltration rate, heating setpoint and boiler efficiency with EnergyPlus and eQUEST. With these results, we identify the characteristics of EnergyPlus and eQUEST and provided base data for the design of energy-saving housing. The results indicate that infiltration rate is the most important factors to consider. And eQUEST heating energy consumption is approximately 10% higher compared to the EnergyPlus under same condition.

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.

Comparison of Energy Efficiency by Production Frontier Approach: Based on OECD Countries (생산 프론티어 접근을 통한 에너지효율 비교: OECD 국가를 중심으로)

  • Kang, Sangmok;Kim, Haechang
    • Environmental and Resource Economics Review
    • /
    • v.20 no.1
    • /
    • pp.33-60
    • /
    • 2011
  • The purpose of the article is to compare the impacts of energy efficiency and economic growth for energy demand through production frontier approach in OECD countries. We compared the traditional energy intensity with energy efficiencies of production frontier approach, slack efficiency on the frontier, and estimated elasticity of energy demand for GDP growth. First, the energy intensity has a low relationship with energy efficiency by radial approach, but has constant correlations with slack energy efficiency, slack-adjusted efficiency by non-radial approach, and energy efficiency by horizon approach. If we measure energy efficiency only with energy elasticity, it may make a mistake. Especially the energy efficiency by radial approach has a tendency to overestimate most OECD countries. Second, as many countries have excess energy consumption of 17.3% even on the points of the frontier, reduction of energy consumption is necessary in addition. Third, the average energy elasticity of OECD countries is 1.1 close to elasticity 1. There exists the difference of elasticity among countries and the energy demands are also high in countries with high elasticity.

  • PDF

A Study on the Major Contituent Components & the Effect of Efficiency Improvement for the BEMS (BEMS(Building Energy Management System) 구축을 위한 주요 구성요소와 건물에너지효율등급 개선효과에 관한 연구)

  • Son, Hag-Sig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2014
  • Currently, the energy consumption rate in buildings is approximately 28.5% of the total energy consumption in Korea. Therefore the amount of the consumption of petroleum resourses is at a worrying level of the blackout. The system of the amount of the Architectural Energy Efficiency Grade [AEEG] is in force by the government to apply the technologies of the Emissions Trading System and the Target Management System to mitigate the Green House Gases for buildings according to the climate change. On the account the mitigation of the Green House Gases and the reduction of the energy, from the view of maintenance and management, for the new and remodeling buildings should be under consideration. The author wants to present the possible ways how to improve the AEEG for the existing buildings by trying to establish the foundation of the BEMs, and by confirming the potential of the energy savings.

Estimating Potential Energy Consumption and Carbon Emission Reduction in South Korea Using Non-radial Data Envelopment Analysis Approach (Non-radial Data Envelopment Analysis를 적용한 지역별 에너지 및 이산화탄소 저감가능성 추정)

  • Kim, Kwang-Uk;Kang, Sang-Mok
    • Environmental and Resource Economics Review
    • /
    • v.25 no.2
    • /
    • pp.299-320
    • /
    • 2016
  • This study estimates an energy efficiency of 16 metropolitans and provinces in Korea, and measures potential energy-saving and carbon emission reduction using a non-radial data envelopment analysis method. Based on energy mix scenarios, this study also evaluates the impact of changes in energy structural adjustment on a regional environmental performance. The empirical results show that, on average, 12.70% of energy consumption and 13.73% of carbon emission can be reduced by improvement in energy efficiency, and low efficiency of oil usage in metropolitan cities is a major source of the inefficiency. Furthermore, it is found that energy mix policy should be considered to achieve an extra energy-saving and carbon reduction.

Energy Performance Evaluation of Apartment Houses According to Window Energy Consumption Efficiency Rating System in Korea (창호 에너지소비효율등급제에 따른 공동주택의 열성능 평가)

  • Lim, Hee Won;Kim, Dong Yun;Lee, Soo Man;An, Jung Hyuk;Yoon, Jong Ho;Shin, U Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2018
  • The Korean fenestration energy consumption efficiency rating system only considers thermal performance of the heat transfer coefficient (U-value) and airtightness excluding optical characteristics of the solar heat gain coefficient (SHGC). This study analyzed annual heating and cooling energy requirements on the middle floor of apartment by optical and thermal performance of windows to evaluate the suitability of the rating system. One hundred and twenty-eight windows were analyzed using THERM and WINDOW 7.4, and energy simulation for a reference model of an apartment house facing south was performed using TRNSYS 17. The results showed that window performance was the main factor in the heating and cooling load. The heating load of the reference model was 539 kWh to 2,022 kW, and the cooling load was 376 kWh to 1,443 kWh. The coefficient of determination ($R^2$) of the heating and cooling loads driven from the SHGC were 0.7437 and 0.9869, which are more compatible than those from the U-value, 0.0558 and 0.4781. Therefore, it is not reasonable to evaluate the energy performance of windows using only the U-value, and the Korean fenestration energy consumption efficiency rating system requires a new evaluation standard, including SHGC.