• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,782, Processing Time 0.039 seconds

Energy Efficient Transmission Parameters Selection Method for CSMA/CA based HR-WPAN System under Ship Environment (선박환경에서 CSMA/CA기반 HR-WPAN 시스템의 에너지 효율적 전송파라미터 선택방식분석)

  • Park, Young-Min;Lee, Woo-Young;Lee, Seong-Ro;Lee, Yeon-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.760-768
    • /
    • 2009
  • In this paper, we propose the energy efficient transmission parameter selection method for Wireless Personal Area Network (WPAN) system which is applied to e-Navigation system considering various ship models environment. An appropriate selection of transmission parameters of HR-WPAN system is very essential to be considered for saving WPAN devices' energy consumption, when HR-WPAN system is applied to ship area network (SAN). Therefore, we propose an energy consumption model for a ship area network employing IEEE 802.15.3 based CSMA/CA HR-WPAN model and analyze the effect of transmission parameter selection on the performance of energy consumption. In particular, the path loss is the major performance decision parameter for the SAN employing HR-WPAN system, since it varies according to the material of shipbuilding such as steel(for large ship), FRP(for medium size ship) and compound wood(for small ship). Thus, we analyze and demonstrate that the proper transmission parameter selection of transmit power, PHY data rate and fragment size for each ship model could guarantee energy efficiency.

A Study on Energy Conservation and Availability (에너지 절약(節約) 방안(方案)과 이용(利用)에너지)

  • Ham, Hyo-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.12 no.1
    • /
    • pp.31-34
    • /
    • 1984
  • The industrial sector is the largest energy consumer, accounting for 44% of the total energy consumption of Korea in 1981. Energy conservation in the industrial processes is one of the most important strategies to the energy conservation to the nation. This paper introduces principles of energy conservation which is the maximum thermodynamic efficiency in energy use. Two important factors considered are how much heat is available and how good is the heat available (the quality of energy).

  • PDF

Decomposition of Direct and Indirect Energy Consumption Growth in Korea from 1990 to 2000 (한국 가정부문 직간접 에너지소비의 증가요인 분석: 1990~2000)

  • Park, Hi-Chun
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.531-553
    • /
    • 2006
  • As energy conservation can be realized through changes in the composition of goods and services consumed, there is a need to assess indirect and total household energy requirements. The Korean household sector was responsible for about 55% of the country's primary energy requirement in the period from 1990 to 2000. And more than 60% of household energy requirement was indirect. Thus, indirect and total rather than direct household energy requirements should be the target of energy conservation policies. Increases in household consumption expenditure were responsible for a relatively high growth of energy consumption. Switching to consumption of less energy intensive products and decrease in energy intensities of products contributed substantially to reduce the increase in total household energy requirement.

  • PDF

Energy Efficiency for Building Security Application of Adaptive Error Control and Adaptive Modulation (빌딩 보안 어플리케이션의 적응 오류제어와 적응 변조의 에너지 효율에 관한 연구)

  • Long, Bora;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.423-429
    • /
    • 2007
  • Since the wireless smart card has played a main role in the identification security application for the building access; this research has its purpose to improve the performance of the smart card system and aims to offer more convenient to user. The contactless cards do not require insertion into a card reader and can work up to centimeters away from the reading device. To be able to cope with this performance the controlling of power consumption through the adaptive modulation and error control is needed. This paper addresses a forward error control (FEC) scheme with the adaptive Reed-Solomon code rate and an M-ary frequency shift keying (M-FSK) modulation scheme with the varying symbol size M over the link. The result of comparing energy efficiencies of adaptive error correction and adaptive modulation to other various static schemes shows to save over 50% of the energy consumption.

  • PDF

Three-dimensional Energy-Aware Path Planning for Quadcopter UAV (쿼드콥터 소모 에너지를 비용함수로 하는 3차원 경로계획)

  • Kim, Hyowon;Jeong, Jinseok;Kang, Beomsoo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.9-17
    • /
    • 2020
  • Mobile robots, including UAVs perform missions with limited fuel. Therefore, the energy-aware path planning is required to maximize efficiency when the robot is operated for a long time. In this study, we estimated the power consumption for each maneuver of a quadcopter UAV in the 3D environment and applied to the cost functions of D Lite. The simulations were performed in a 3D environment that is similar to the industrial sites. The efficiency of path generation was high when the energy-aware path planning with simplified heuristic was applied. In addition, the energy-aware path was generated 19.3 times faster than the shortest path with a difference within 3.2%.

An Enhanced LPI Control Mechanism in Energy Efficient Ethernet (에너지 효율적인 이더넷에서 개선된 LPI 제어 메커니즘)

  • Lee, Sung-Keun;Jang, Yong-Jae;Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.983-989
    • /
    • 2012
  • IEEE 802.3az LPI mechanism allows an Ethernet link to reduce power consumption by entering a low-power sleeping mode and letting some components being powered off when there is no data to be transmitted through the link. However, if small amount of packets are being sent periodically, such a mechanism can not obtain energy efficiency due to a high overhead caused by excessive mode transitions. In this paper, we propose an enhanced LPI mechanism which can perform state transition adaptively based on the traffic characteristics on transport layer and network status. This simulation result shows that proposed mechanism improves energy efficiency than LPI mechanism with respect to energy consumption rate for various traffic loads.

Dual-hop Routing Protocol for Improvement of Energy Consumption in Layered WSN Sensor Field

  • Song, Young-Il;LEE, WooSuk;Kwon, Oh Seok;Jung, KyeDong;Lee, Jong-Yong
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2016
  • This paper proposes to increase the node energy efficiency, which rapidly drops during the transmission of L-TEEN (Layered Threshold sensitive Energy Efficient sensor Network protocol), using the method of DL-TEEN (Dual-hop Layered TEEN). By introducing dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission was introduce. By introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was introduces. In the proposed DL-TEEN, the energy consumption of cluster head for remote transmission reduces and increases the energy efficiency of sensor node by reducing the transmission distance and simplifying the transmission routine for short-range transmission. As compared the general L-TEEN, it was adapted to a wider sensor field.

Hierarchical WSN Dual-hop Routing Protocol for Improvement of Energy Consumption

  • Park, SeaYoung;LEE, WooSuk;Kwon, Oh Seok;Jung, KyeDong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.24-37
    • /
    • 2016
  • This paper proposes to increase the efficiency of energy in nodes, which rapidly drops during the transmission of the Low Energy Adaptive Clustering Hierarchy (LEACH), through the use of dual-hop layered application in the sensor field. Along with introducing the dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission were also introduced. Additionally, by introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was used. In the proposed DL-LEACH, the energy consumption of the cluster head for remote transmission reduced, as well as increased the energy efficiency of the sensor node by reducing the transmission distance and simplifying the transmission route for short-range transmission. As compared the general LEACH, it was adapted to a wider sensor field.

Performance Analysis of Switching Strategy in LTE-A Heterogeneous Networks

  • Peng, Jinlin;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.292-300
    • /
    • 2013
  • Nowadays, energy saving has become a hot topic and information and communication technology has become a major power consumer. In long term evolution advanced (LTE-A) networks, heterogeneous deployments of low-power nodes and conventional macrocells provide some new features, such as coverage extension, throughput enhancement, and load balancing. However, a large-scale deployment of low-power nodes brings substantial energy consumption and interference problems. In this paper, we propose a novel switching strategy (NS), which adaptively switches on or off some low-power nodes based on the instantaneous load of the system. It is compatible with the microcells' load balancing feature and can be easily implemented on the basis of existing LTE-A specifications. Moreover, we develop an analytical model for analyzing the performance of system energy consumption, block rate, throughput, and energy efficiency. The performance of NS is evaluated by comparison with existing strategies. Theoretical analysis and simulation results show that NS not only has a low block rate, but also achieves a high energy efficiency.

Recognition of Occupants' Cold Discomfort-Related Actions for Energy-Efficient Buildings

  • Song, Kwonsik;Kang, Kyubyung;Min, Byung-Cheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.426-432
    • /
    • 2022
  • HVAC systems play a critical role in reducing energy consumption in buildings. Integrating occupants' thermal comfort evaluation into HVAC control strategies is believed to reduce building energy consumption while minimizing their thermal discomfort. Advanced technologies, such as visual sensors and deep learning, enable the recognition of occupants' discomfort-related actions, thus making it possible to estimate their thermal discomfort. Unfortunately, it remains unclear how accurate a deep learning-based classifier is to recognize occupants' discomfort-related actions in a working environment. Therefore, this research evaluates the classification performance of occupants' discomfort-related actions while sitting at a computer desk. To achieve this objective, this study collected RGB video data on nine college students' cold discomfort-related actions and then trained a deep learning-based classifier using the collected data. The classification results are threefold. First, the trained classifier has an average accuracy of 93.9% for classifying six cold discomfort-related actions. Second, each discomfort-related action is recognized with more than 85% accuracy. Third, classification errors are mostly observed among similar discomfort-related actions. These results indicate that using human action data will enable facility managers to estimate occupants' thermal discomfort and, in turn, adjust the operational settings of HVAC systems to improve the energy efficiency of buildings in conjunction with their thermal comfort levels.

  • PDF