• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,785, Processing Time 0.028 seconds

Improving Efficiency of Dehumidifiers via Nature-Inspired Technology (제습기의 에너지 효율증가를 위한 자연모사기술의 제안)

  • Yun, Seongjin;Song, Kyungjun;Park, Byung Kil;Kim, Wandoo;Kang, Sanghyeon;Lee, Sun Yong;Lim, Hyuneui
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.211-219
    • /
    • 2013
  • Even though global warming and humid climate have resulted in an increase of use of dehumidifiers, they are not becoming more common because of high energy consumption. Furthermore, conventional dehumidifier technology finally reaches the limit to increase energy efficiency of water collection. As an alternative, nature-inspired technology may lead to a major breakthrough in the dehumidification performance. In order to improve the efficiency of dehumidifiers, we first analyze the energy consumption of commercial dehumidifiers and then study bioinspired water collection methods adopted by Namib beetles and grass.

Thermal Performance Assessment of Wet Ondol and Electric Ondol System (습식온돌시스템과 전기온돌시스템의 열성능 평가)

  • Han, Byung-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.

Deinking of White Ledger with Ultrasonic Wave : Laboratory Scale Trial

  • Won, Jong Myoung
    • Journal of Forest and Environmental Science
    • /
    • v.23 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • Ultrasonic deinkings of white ledger were carried out to confirm whether the ink removal efficiency and pulp qualities can be improved by the ultrasonic deinking. The effects of conventional pulping and ultrasonic treatment of white ledger on the ink particle size distribution and ink removal coefficient were compared. The physical properties of paper, energy consumption and effluent qualities were measured. The ultrasonic treatment of white ledger resulted in the ink particle size distribution suitable for flotation. The ink removal efficiency, brightness, breaking length and effluent quality were improved by the ultrasonic deinking. It is expected that the competitiveness of ultrasonic deinking system can be improved by the optimization of treatment condition.

  • PDF

Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household (가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현)

  • Lee, JuHui;Lee, KangYoon
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 2021
  • Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

Suggestion of Thermal Environment Miniature for Evaluation of Heating Efficiency Based on Thermal Conductivity Measurement Method of Building Materials (건축재료의 열전도율 측정방법에 의한 바닥재 난방효율 평가용 열환경 모형 제안)

  • Jeon, Ji-Soo;Seo, Jung-Ki;Kim, Su-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.269-280
    • /
    • 2011
  • Today, global warming is one of main problems all over the world. The cause of the global warming is carbon dioxide outbreak by the rapidly increasing energy use. Therefore, it is necessary to save energy in each industrious field. It was investigated that the half of total energy consumption over the world was used for construction and building. Therefore, the saving of the building energy plays a significant role in decreasing total energy consumption. With the considerable increase in building energy consumption, a green building rating system and certification are required to reduce building energy consumption and $CO_2$ emissions. Of various elements reducing building energy, the thermal conductivity of materials affects the energy consumption as a basic element, which is directly related with reducing energy consumption. In particular, as the thermal conductivity of finishing materials is an important factor to decide heating energy efficiency of floor heating system, the investigation and development are necessary.

Near-explosion protection method of π-section reinforced concrete beam

  • Sun, Qixin;Liu, Chao
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.209-224
    • /
    • 2022
  • In this study, the numerical analysis model of π-beam explosion is established to compare and analyze the failure modes of the π-beam under the action of explosive loads, thus verifying the accuracy of the numerical model. Then, based on the numerical analysis of different protection forms of π beams under explosive loads, the peak pressure of π beam under different protection conditions, the law of structural energy consumption, the damage pattern of the π beam after protection, and the protection efficiency of different protective layers was studied. The testing results indicate that the pressure peak of π beam is relatively small under the combined protection of steel plate and aluminum foam, and the peak value of pressure decays quickly along the beam longitudinal. Besides, as the longitudinal distance increases, the pressure peak attenuates most heavily on the roof's explosion-facing surface. Meanwhile, the combined protective layer has a strong energy consumption capacity, the energy consumed accounts for 90% of the three parts of the π beam (concrete, steel, and protective layer). The damaged area of π beam is relatively small under the combined protection of steel plate and aluminum foam. We also calculate the protection efficiency of π beams under different protection conditions using the maximum spalling area of concrete. The results show that the protective efficiency of the combined protective layer is 45%, demonstrating a relatively good protective ability.

Estimation of the Energy Saving Potential using Energy Bandwidth Analysis in Manufacturing Plant (에너지 대역분석 기법을 이용한 생산플랜트에서 에너지절감 잠재량 산정)

  • Park, Hyung-Joon;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.236-240
    • /
    • 2011
  • Currently one of the most importance issues in industrial sector is energy cost and energy efficiency. The manufacturing plants especially have made many efforts to reduce energy cost by implementing maintenances. But in many cases, they are not aware that how much energy could be saved more. If we know the best energy consumption, which signifies energy baseline, we can control the intensity of maintenances. One way to obtain the baseline is using proper statistics from a specific plant, a sector of industry. Energy bandwidth signifies the gap between actual Specific Energy Consumption(SEC) of a certain plant and minimum SEC of the best plant, and estimate energy saving potential(ESP) is a result of bandwidth analysis. We chose a model plant and implemented some maintenance for a year, and then we obtained ESP. Additionally we could determine the decreased amount of carbon emissions from the plant using Carbon Emissions Factor(CEF) by Intergovernmental Panel on Climate Change(IPCC).

Energy-Efficient Scheduling with Individual Packet Delay Constraints and Non-Ideal Circuit Power

  • Yinghao, Jin;Jie, Xu;Ling, Qiu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • Exploiting the energy-delay tradeoff for energy saving is critical for developing green wireless communication systems. In this paper, we investigate the delay-constrained energy-efficient packet transmission. We aim to minimize the energy consumption of multiple randomly arrived packets in an additive white Gaussian noise channel subject to individual packet delay constraints, by taking into account the practical on-off circuit power consumption at the transmitter. First, we consider the offline case, by assuming that the full packet arrival information is known a priori at the transmitter, and formulate the energy minimization problem as a non-convex optimization problem. By exploiting the specific problem structure, we propose an efficient scheduling algorithm to obtain the globally optimal solution. It is shown that the optimal solution consists of two types of scheduling intervals, namely "selected-off" and "always-on" intervals, which correspond to bits-per-joule energy efficiency maximization and "lazy scheduling" rate allocation, respectively. Next, we consider the practical online case where only causal packet arrival information is available. Inspired by the optimal offline solution, we propose a new online scheme. It is shown by simulations that the proposed online scheme has a comparable performance with the optimal offline one and outperforms the design without considering on-off circuit power as well as the other heuristically designed online schemes.

A new method to convert into seawater heat for the indoor air-conditioning resource (건물의 냉방을 위한 해수열 취득에 관한 실험적 연구)

  • Kim Ki-Cheol;Lee Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.883-890
    • /
    • 2005
  • The industrial growth and the raised living quality have led to the massive energy consumption. As a result. the polluted environment and the limited amount of energy resources emerged as serious problems to be resolved in 21st century. Especially, in the case of Korea whose imported energy dependency rate is 98.2$\%$ in 2003 and constantly increasing every rear. more than 24$\%$ of overall energy consumption is for housing and commercial use. In order to cope with the shortage of natural energy resources, it is inevitable to develop alternative sustainable energy resources including seawater heat. so that they can replace existing resources. The heat transfer air velocity 3.5 m/s is proper to consideration with the body the pipe size 200A is more suitable than look due to the air velocity quantify and the ratio of pipe surface area. And the error between experimental data with simulation is below 5.34$\%$ so the suggested equation for calculating heat transfer capacity can be used. Therefore out of many methods utilizing seawater heat. this work Presents the efficiency of using sea water heat as a resource for air-conditioners which can be converted from the outside air through the air-to-heat conversion tube . Consequently. this method provides pretty reasonable energy efficiency.

An Energy Efficient Re-clustering Algorithm in Wireless Sensor Networks (무선센서네트워크에서의 에너지 효율적인 재클러스터링 알고리즘)

  • Park, Hye-bin;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • Efficient energy consumption is a one of the key issues in wireless sensor networks. Clustering-based routing algorithms have been popular solutions for such an issue. Re-clustering is necessary for avoiding early energy drain of cluster head nodes in such routing strategies. The re-clustering process itself, however, is another source of energy consumption. It is suggested in this work to adaptively set the frequency of re-clustering by comparing the energy levels of cluster heads and a threshold value. The algorithm keeps the clusters if all the cluster heads' energy levels are greater than the threshold value. We confirm through simulations that the suggested algorithm shows better energy efficiency than the existing solutions.