• Title/Summary/Keyword: Energy Analysis Model

Search Result 4,522, Processing Time 0.033 seconds

Analysis and Design considerations of Energy Absorbing Steering System Using Orthogonal Arrays (직교배열표를 이용한 에너지흡수 조향계의 해석 및 설계)

  • 임재문;한선규;전원기;우덕현;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.144-155
    • /
    • 1999
  • An occupant analysis code SAFE (Safety Analysis For occupant crash Environment) is utilized to simulate and improve the crash performance of an energy absorbing steering system. The safety standard FMVSS 203 is simulated and used for design evaluations . Segments and contact elliposids are utilized to model the bod blocks and the components of the steering system with SAFE. Spring-damper elements and force-deflection characteristics are utilized to model the energy absorbing components such as the plate and the polyacetal molding. The plate absorbs the impact energy through tensile deformation . Whereas, the polyacetal molding absorbs the impact energy through compression. the body block test is carried out to validate tie simulation model, and real component tests are performed to extract the force-deflection curves . After the model is validated , the parameter study is carried out to evaluate the crash performance of the energy absorbing components. A performance measure is defined for the parameter study. Using the results of the parameter study and managing the orthogonal arrays, optimum design values of energy absorbing components are determined to minize the occupant injury.

  • PDF

Effect Analysis on Energy Efficiency Improvement for Establishing Energy Balance Flow (Energy Balance Flow 구축에 의한 에너지효율향상 효과분석)

  • Kim, Yong-Ha;Jo, Hyun-Mi;Sin, Hyung-Chul;Kim, Hyung-Jung;Woo, Sung-Min;Kim, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.679-680
    • /
    • 2011
  • This paper is developed to Energy Balance Flow show the flow of total energy resource be used nationally. The Energy Balance Flow is applicable of demand management factor through the analysis of foreign energy model of supply and demand and energy statistic data in the country. This study is based on and developed to Energy system management model is able to appraisal efficient of energy cost cutting, CO2 emission reduction and Energy saving at the national level calculated effect reached amount of primary energy to change of energy flow followed application of demand side management factor is able to appraisal quantitatively at the total energy to model of demand and supply.

  • PDF

A Study on the Application of Simulation-based Simplified PMV Regression Model for Indoor Thermal Comfort Control (실내 온열환경 쾌적 제어를 위한 단순 PMV 회귀모델의 적용에 관한 시뮬레이션 연구)

  • Kim, Sang-Hun;Yun, Sung-Jun;Chung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2015
  • The PMV regression analysis was conducted for this model based on a database of the PMV variables. PMV regression model simplification was completed through sensitivity and data analysis. The simplified PMV regression model's and Fanger PMV model was confirmed through MAE and RMSE. And the EMS in EnergyPlus was used to establish a simplified PMV regression analysis-based thermal comfort control. Also, the thermal comfort controls based on simplified PMV model and the Fanger PMV model were applied to the building model, it was confirmed that both controls met the thermal comfort range in more than 90% of cases during the air conditioning period.

Wire-wrap Models for Subchannel Blockage Analysis

  • Ha K.S.;Jeong H.Y.;Chang W.P.;Kwon Y.M.;Lee Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.165-174
    • /
    • 2004
  • The distributed resistance model has been recently implemented into the MATRA-LMR code in order to improve its prediction capability over the wire-wrap model for a flow blockage analysis in the LMR. The code capability has been investigated using experimental data observed in the FFM (Fuel Failure Mock-up)-2A and 5B for two typical flow conditions in a blocked channel. The predicted results by the MATRA-LMR with a distributed resistance model agreed well with the experimental data for wire-wrapped subchannels. However, it is suggested that the parameter n in the distributed resistance model needs to be calibrated accurately for a reasonable prediction of the temperature field under a low flow condition. Finally, the analyses of a blockage for the assembly of the KALIMER design are performed. Satisfactory results by the MATRA-LMR code were obtained through and rerified a comparison with results of the SABRE code.

Shaking table test and numerical analysis of a combined energy dissipation system with metallic yield dampers and oil dampers

  • Zhou, Qiang;Lu, Xilin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.187-201
    • /
    • 2004
  • A shaking table test on a three-story one-bay steel frame model with metallic yield dampers and their parallel connection with oil dampers is carried out to study the dynamic characteristics and seismic performance of the energy dissipation system. It is found from the test that the combined energy dissipation system has favorable reducing vibration effects on structural displacement, and the structural peak acceleration can not evidently be reduced under small intensity seismic excitations, but in most cases the vibration reduction effect is very good under large intensity seismic excitations. Test results also show that stiffness of the energy dissipation devices should match their damping. Dynamic analysis method and mechanics models of these two dampers are proposed. In the analysis method, the force-displacement relationship of the metallic yield damper is represented by an elastic perfectly plastic model, and the behavior of the oil damper is simulated by a velocity and displacement relative model in which the contributions of the oil damper to the damping force and stiffness of the system are considered. Validity of the analytical model and the method is verified through comparison between the results of the shaking table test and numerical analysis.

Design and Analysis of Power Circuit Breaker Mechanism Based on the Dynamic Model (동적모델에 기반한 고압회로차단기의 설계 및 해석)

  • Kwon, B.H.;Ahn, K.Y.;Oh, I.S.;Seo, J.M.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.476-481
    • /
    • 2001
  • In this paper, based on the developed dynamic model of a vacuum circuit breaker mechanism, the development of the new circuit breaker with less energy mechanism is focused. The energy flow analysis of the original mechanism is carried out to show where the elastic potential energies of pre-loaded springs are transmitted. Through energy flow analysis, the concept design of the new circuit breaker with less energy mechanism is proposed, and then the detailed design is carried out through the design process based on the verified dynamic model. Comparing simulation results with experiment using a high-speed camera, the appropriateness of the proposed design procedures for the rapid circuit breaker mechanism is shown.

  • PDF

Energy Evaluation Studies on Pyroprocessing of Solids (고체 물질의 고온 처리 공정에 관한 에너지 평가 연구)

  • Ha, Daeseung;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.305-307
    • /
    • 2014
  • Pyroprocessing (or pyrometallurgy) is the way of extracting from materials subjected to high temperatures. Generally, this process has a high energy consumption because of mass production and heating-up. To attain effective and efficient energy management, energetic analysis using 0-dimensional model is usually conducted. However, this model can lead to a misunderstanding about energy evaluation due to many assumptions and limitations. In this study, heat & mass balance using 0-dimensional model was reviewed to systematize problems and considerations in general process energy evaluation.

  • PDF

Development of an Energy Model of Rice Processing Complex(II) -Simulation Model Development and Analysis of Energy Requirement- (미곡종합처리장의 에너지 모델 개발(II) -시뮬레이션 모델 개발 및 소요 에너지 분석-)

  • 장홍희;장동일;김만수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.275-287
    • /
    • 1995
  • The rice processing complex(RPC) consisted of the rice handling, drying, storage, and milling processes. It has been established at 83 locations domestically by April 1994, and 200 of RPC will be built more throughout the country. Therefore, this study has been performed to achieve two objectives as the followings : 1) Development of mathematical models which can assess the requirement of electricity, fuel, and labor for four model systems of rice processing complex. 2) Development of a computer simulation model which produce the improved designs of RPC by the evaluation results of energy requirements of four RPC models. The results from this study are summarized as follows : 1) Mathematical models were developed on the basis of result of mass balance analysis and required power of machines for each process. 2) A computer simulation model was developed, which can produce the improved designs of RPC by the evaluation results of energy requirements. The computer simulation model language was BORLAND $C^{++}$. 3) The results of simulation showed that total energy requirements were ranged from 75.94㎾h/t to 124.30㎾h/t. 4) From the results of computer analysis of energy requirement classified by drying type, it was found that energy requirement of the drying type A{paddy rice (PR) for storage-natural air drying(15%), PR for milling-heated air drying(16%)} were less than that of the drying type B{1 step-natural air drying(PR for storage : 18%, PR for milling : 20%), 2 step-heated air drying(PR for storage : 15%, PR for milling : 16%)}. 5) The energy efficient drying method is that all the incoming rough rice to RPC should be dried by national air drying systems. If it is more than the capacity of national air drying system, the amount of surplus rough rice is recommended to be dried by the heated air drying method.

  • PDF

Static Equivalent Model of Inverter-based Distributed Energy Resource for Fault Analysis of Power Distribution Grid

  • Kim, Dong-Eok;Cho, Namhun;Yang, Seung-Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.569-575
    • /
    • 2016
  • In this paper, we propose a method to develop a static equivalent model of an inverter-based distributed energy resource (DER), where the model is used for a steady-state fault analysis of a power grid. First, we introduce the characteristics of an inverter-based DER as well as its general configuration. Then, we derive the equivalent model of the DER on the basis of the characteristics. Last, the performance of the proposed method is proven by the results of computer simulations.

Energy-based Approach to Power Transfer System Analysis

  • Moon, Young-Hyun;Lee, Jong-Gi;Kwon, Yong-Jun
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.227-235
    • /
    • 2004
  • This paper presents a new theoretical approach to energy-based power system analysis for multibus power transmission systems. On the basis of mechanical analogy, an exact energy integral expression is derived for lossy multi-bus systems through rigorous energy analysis. A simple rigid rod model of mechanical power transfer system is introduced to address the physical meanings of potential energy terms associated with transfer conductances as well as transfer susceptances. Finally, energy-based analysis has been proposed to show that the energy function has all information of the power system characteristics.