• Title/Summary/Keyword: Energy & fuel technology

Search Result 2,746, Processing Time 0.032 seconds

Study on Internal Reforming Characteristic of 1 kW Solid Oxide Fuel Cell Stack (1 kW 고체산화물 연료전지 스택의 내부개질 특성 연구)

  • CHOI, YOUNGJAE;AHN, JINSOO;LEE, INSUNG;BAE, HONGYOUL;MOON, JIWOONG;LEE, JONGGYU
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • This paper presents the performance characteristics of a 1 kW solid oxide fuel cell (SOFC) stack under various internal reforming and fuel utilization conditions. The Research Institute of Industrial Science & Technology (RIST) developed the 9-cell stack using a $20{\times}20cm^2$ anode supported planar cell with an active area of $324cm^2$. In this work, current-voltage characteristic test, fuel utilization test, continuous operation, and internal reforming test were carried out sequentially for 765 hours at a furnace temperature of $700^{\circ}C$. The influence of fuel utilization and internal reforming on the stack performance was analyzed. When the 1 kW stack was tested at a current of 145.8 A with a corresponding fuel utilization of 50-70% (internal reforming of 50%) and air utilization of 27%, the stack power was approximately 1.062-1.079 kW. Under continuous operation conditions, performance degradation rate was 2.16%/kh for 664 hours. The internal reforming characteristics of the stack were measured at a current of 145.8. A with a corresponding fuel utilization of 60-75%(internal reforming of 50-80%) and air utilization of 27%. As fuel utilization and internal reforming ratio increased, the stack power was decreased. The stack power change due to the internal reforming ratio difference was decreased with increasing fuel utilization.

Molecular Dynamics Study of Anion Conducting Ionomer under Excessive Water Condition (과량의 수화상태에서 음이온 전도성 이오노머의 분자동역학 전산모사 연구)

  • Hoseong, Kang;So Young, Lee;Hyoung-Juhn, Kim;Chang Hyun, Lee;Chi Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.475-485
    • /
    • 2022
  • The continuous excessive consumption of fossil fuels is causing global warming, climate, and environmental crisis. Accordingly, hydrogen energy attracts attention among alternative energies of fossil fuels, because it has the advantage of not emitting pollutants and not having resource restrictions. Therefore, various studies are being conducted on a water electrolysis system for producing hydrogen and a fuel cell system for producing electricity by using hydrogen energy as a fuel. In this study, 3D ionomer models were produced by reflecting the excessive water condition of an anion-conductive ionomer material, which is one of the core materials of water electrolysis systems and fuel cells. Finally, by analyzing the structural stability and performance of the ionomer under an excessively hydrated condition, we suggested a performance improvement factor in the design of an anion conductive ionomer, a key material for water electrolysis systems and fuel cells.

Implementation of a Dry Process Fuel Cycle Model into the DYMOND Code

  • Park Joo Hwan;Jeong Chang Joon;Choi Hangbok
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.175-183
    • /
    • 2004
  • For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada deuterium uranium (CANDU) reactor, direct use of spent pressurized water reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-though and DUPIC fuel cycles.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

Improvement of delayed hydride cracking assessment of PWR spent fuel during dry storage

  • Hong, Jong-Dae;Yang, Yong-Sik;Kook, Donghak
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.614-620
    • /
    • 2020
  • In a previous study, delayed hydride cracking (DHC) assessment of pressurized water reactor (PWR) spent fuel during dry storage using the threshold stress intensity factor (KIH) was performed. However, there were a few limitations in the analysis of the cladding properties, such as oxide thickness and mechanical properties. In this study, those models were modified to include test data for irradiated materials, and the cladding creep model was introduced to improve the reliability of the DHC assessment. In this study, DHC susceptibility of PWR spent fuel during dry storage depending on the axial elevation was evaluated with the improved assessment methodology. In addition, the sensitivity of affecting parameters such as fuel burnup, hydride thickness, and crack aspect ratio are presented.

A Shared Compliant Control Scheme based on Internal Model Control

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1571-1574
    • /
    • 2003
  • A shared compliant control scheme based on IMC is proposed for the position-force force reflecting control system. The controller of the slave manipulator is designed by IMC method for the open loop unstable plant. The compliant control is implemented by first order low pass filter. In the proposed scheme, the slave manipulator well tracks the position of the master manipulator in free space and the compliance of the slave manipulator is autonomously controlled in contact condition. The simulation results show that the excellence of the proposed controller.

  • PDF

Numerical Analysis of Heat Transfer and Solidification in the Continuous Casting Process of Metallic Uranium Rod (금속 우라늄봉의 연속주조공정에 대한 열전달 및 응고해석)

  • Lee, Ju-Chan;Lee, Yoon-Sang;Oh, Seung-Chul;Shin, Young-Joon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • Continuous casting equipment was designed to cast the metallic uranium rods, and a thermal analysis was carried out to calculate the temperature and solidification profiles. Fluid flow and heat transfer analysis model including the effects of phase change was used to simulate the continuous casting process by finite volume method. In the design of continuous casting equipment, the casting speed, pouring temperature and cooling conditions should be considered as significant factors. In this study, the effects of casting speed, pouring temperature, and air gap between the uranium and mold were investigate. The results represented that the temperature and solidification profiles of continuous casting equipment varied with the casting speed, pouring temperature, and air gap.

  • PDF

Sales Energy Promotion Efficiency and Policy Utilization Plan for Energy Facilities

  • KWON, Lee-Seung;LEE, Woo-Sik;KWON, Woo-Taeg
    • Journal of Distribution Science
    • /
    • v.18 no.9
    • /
    • pp.67-75
    • /
    • 2020
  • Purpose: The purpose of this study is to enhance sales promotion efficiency for using solid refuse fuel facilities. Renewable energy technology using Solid Refuse Fuel (SRF) is an economic efficiency technology that recovers waste by burning various wastes. A survey on the pollutants discharged from the solid fuels facilities was investigated so that the SRF facilities could be expanded, distributed and reflected in the policy. Research design, data, and methodology: In this study, 9 business sites using SRF and Bio-SRF as main raw materials were investigated for 2 years. The characteristics of target business sites such as the type of fuel used, combustion method, combustion temperature, daily fuel consumption and environmental prevention facilities were studied. Results: The average pollution & ammonia concentration of Bio-SRF facilities was found to be 88.15% higher than that of SRF facilities. But the average acetaldehyde concentration of SRF facilities was found to be 88.15% higher than that of Bio-SRF facilities. Conclusions: The main issue is how much electric power generation using combustible materials affects air pollution. The waste recycling law provides the standard value according to the fuel property, but there is a considerable gap with the mixed fuel. Therefore, for efficient utilization of facilities using solid fuel products, additional research is needed to improve the distribution structure of exhaust pollutants is needed.

Enhancement of Mechanical Strength Using Nano Aluminum Reinforced Matrix for Molten Carbonate Fuel Cell (용융탄산염 연료전지를 위한 나노 알루미늄을 이용한 강화 매트릭스의 기계적 강도 증진)

  • Kim, Hyung-Suk;Song, Shin-Ae;Jang, Seong-Cheol;Park, Dong-Nyeock;Ham, Hyung-Chul;Yoon, Sung-Pil;Oh, Seong-Geun;Han, Jong-Hee;Kim, Sung-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.2
    • /
    • pp.143-149
    • /
    • 2012
  • 용융탄산염 연료전지 상용화를 위해서 40,000 시간이상 장기 운전이 가능해야 한다. 장기운전을 위해 크랙 발생이 적고 기계적 강도가 높은 강화 매트릭스의 개발이 절실히 요구되고 있다. 본 연구에서는 $LiAlO_2$에 알루미늄 나노입자를 첨가하여 매트릭스의 기계적 강도를 향상시키는 연구를 수행하였다. 나노 알루미늄 첨가 $LiAlO_2$ 그린 시트를 수소 분위기에서 열처리한 결과, 공기 분위기에서 열처리한 매트릭스에 비해 기계적 강도가 1.5배 증가함을 확인하였다. 이는 환원분위기에서 열처리를 할 경우, 알루미늄의 입자간의 소결으로 인한 neck이 형성 되어 $LiAlO_2$ 입자 간에 다리를 만들어주는 효과가 나타나 매트릭스의 기계적 강도가 크게 증진되었으리라 판단된다.