• Title/Summary/Keyword: Energy/electron transfer

Search Result 307, Processing Time 0.033 seconds

The electronic structure of the ion-beam-mixed Pt-Cu alloys by XPS and XANES

  • Lim, K.Y.;Lee, Y.S.;Chung, Y.D.;Lee, K.M.;Jeon, Y.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.133-133
    • /
    • 1998
  • In the thin film alloy formation of the transition metals ion-beam-mixing technique forms a metastable structure which cannot be found in the arc-melted metal alloys. Sppecifically it is well known that the studies about the electronic structure of ion-beam-mixed alloys pprovide the useful information in understanding the metastable structures in the metal alloy. We studied the electronic change in the ion-beam-mixed ppt-Ct alloys by XppS and XANES. These analysis tools pprovide us information about the charge transfer in the valence band of intermetallic bonding. The multi-layered films were depposited on the SiO2 substrate by the sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr. These compprise of 4 ppairs of ppt and Cu layers where thicknesses of each layer were varied in order to change the alloy compposition. Ion-beam-mixing pprocess was carried out with 80 keV Ae+ ions with a dose of $1.5\times$ 1016 Ar+/cm2 at room tempperature. The core and valence level energy shift in these system were investigated by x-ray pphotoelectron sppectroscoppy(XppS) pphotoelectrons were excited by monochromatized Al K a(1486.6 eV) The ppass energy of the hemisppherical analyzer was 23.5 eV. Core-level binding energies were calibrated with the Fermi level edge. ppt L3-edge and Cu K-edge XANES sppectra were measured with the flourescence mode detector at the 3C1 beam line of the ppLS (ppohang light source). By using the change of White line(WL) area of the each metal sites and the core level shift we can obtain the information about the electrons pparticippating in the intermetallic bonding of the ion-beam-mixed alloys.

  • PDF

The effect of $Ar\;+\;H_2$ Plasma on the Low Temperature ITO Film Synthesized on Polymer (폴리머 기판상에 합성된 저온 ITO 박막에 미치는 $Ar\;+\;H_2$ 플라즈마의 영향)

  • Moon, Chang-S.;Chung, Yun-M.;Lee, Ho-Y.;Kim, Yong-M.;Kim, Kab-S.;Gaillard, M.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.206-209
    • /
    • 2006
  • Indium tin oxide (ITO) films were synthesized on polymer (PES, polyethersulfone) at room temperature by pulsed DC magnetron sputtering. By the control of introducing hydrogen to argon atmosphere, the resistivity of ITO films was obtained at $5.27\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$ without substrate heating in comparison with $2.65\;{\times}\;10{-3}\;{\Omega}{\cdot}cm$ under hydrogen free condition. ITO film synthesized at Ar condition was changed from amorphous to crystalline. These result from the enhancement of electron temperature in $Ar\;+\;H_2$ plasma, which induces the increase of ionization of target materials and argon. The dominant increase of ions such as In II and O II and neutral Sn I was monitored by optical emission spectroscopy (OES). Thermal energy required for the crystalline film formation is compensated by kinetic energy transfer through ion bombardments to substrate.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Determination of inclusion complex formation constants for the β-CD and [Cu(Dien)(sub-Py)]2+ ion by the spectrophotometric methods (분광 광도법에 의한 β-CD와 [Cu(Dien)(sub-Py)]2+이온간의 복합체 형성 상수 결정)

  • Kim, Chang Suk;Oh, Ju Young
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.406-412
    • /
    • 2007
  • The formation of inclusion complexes between ${\beta}$-cyclodextrin and diethylenetriamine substituted-pyridine copper(II) perchlorate; [Cu(dien)(sub-py)] $(ClO_4)_2$, were studied by spectrophotometric methods. On account of charge-transfer band(MLCT) and $^2T_2{\rightarrow}^2E$, the two high peaks were observed as an inclusion complex for the [${\beta}$-CD]$[Cu(dien)(p-Cl-py)]^{2+}$ in the ultraviolet region of the spectrum. The ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion formed a 1:1 complex, and the formation constants were decreased with the increasing temperatures, due to weak binding energy between ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion. This reaction was controlled by enthalpy. In a correlation of the Hammett substituent constants and formation constants for the reaction, formation constants were increased by strong binding energy in the inclusion complexes when electron donating groups were substituted in pyridine ring.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

Current Generation from Microbial Fuel Cell Using Stainless Steel Wire as Anode Electrode (스텐철사를 전극으로 이용하는 미생물연료전지의 전류 발생)

  • Jang, Jae Kyung;Kim, Kyung Min;Byun, SungAh;Ryou, Young Sun;Chang, In Seop;Kang, Young Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.753-757
    • /
    • 2014
  • Anode electrode in a microbial fuel cell (MFC) should transfer the receiving electron as well as provide large surface area that can be immobilized microorganisms. Microorganisms' population is one of important factors to improve the current generation and to treat the livestock wastewater by biological treatment. These studies were attempted to investigate if stainless-steel wire skein (SSWS) could be used as anode electrode replacement a graphite felt electrode in microbial fuel cell. For these studies, pretreated livestock wastewater was used diluted to 500 mg/L as COD before use. At this time, the current showed a little difference of about 5% when using each of a SSW and graphite felt (control). There was no significant difference in the current value. The organic removal rate in the microbial fuel cells used graphite felt and SSWS was 82.4% and 88.3%, respectively. The COD removal in the MFC used the SSWS was higher than that of graphite felt. Ammonium nitrogen was showed similar trend in two case all. These results about current generation and organic matter reduction seem possible that SSWS was used to anode electrode. When SSWS is used, the initial investment for system construction is expected to be able to reduce by approximately 1/50.

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

Thermal Properties of Two-Layered Materials Composed of Dielectric Layer on Metallic Substrate along the Thickness Direction (금속기판에 유전체 후막을 형성시켜 제조한 2층 층상재료에서 두께 방향의 열전도 특성)

  • Kim, Jong-Gu;Jeong, Ju-Young;Ju, Jae-Hoon;Park, Sang-Hee;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.87-92
    • /
    • 2016
  • The importance of heat dissipation for the electric device modules along the thickness direction is increasing. Two types of two-layered materials, metal-metal bonding and dielectric-metal bonding, have been fabricated by roll bonding process and a thermal diffusivity of the specimens was measured along the thickness direction. The thermal diffusivity of specimens with metal-metal bonding measured by light flash analysis (LFA) showed a same value independent on the direction of heat flow. However, the thermal diffusivity of specimens with dielectric-metal bonding showed a big difference of 17.5% when the direction of heat flow changed oppositely in the LFA process. The measured thermal diffusivity of specimens when the heat flows from metal to dielectric direction showed smaller value of 17.5% compared to the value when the heat flow from dielectric to metal direction. The difference in thermal diffusivity of specimens with dielectric-metal bonding dependence on direction of heat flow is due to the electron-phonon resistance that occurred transfer process of electron energy to phonon energy near the interface.

Studies on the Optical and the Electrical Characterization of Organic Electroluminescence Devices of Europium Complex Fabricated with PVD(Physical Vopor Deposition) Technique (진공 증착법에 의하여 제작한 Europium complex 유기 박막 전기발광소자의 광학적.전기적 특성에 관한 연구.)

  • Lee, Myeong-Ho;Lee, Han-Seong;Kim, Yeong-Gwan;Kim, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.285-295
    • /
    • 1999
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multi-color emission, and low operation voltage. An approach to realize such device characteristics is to use active layers of lanthanide complexes with their inherent extremely sharp emission bands in stead of commonly known organic dyes. In general, organic molecular compounds show emission due to their $\pi$-$\pi*$ transitions resulting in luminescence bandwidths of about 80 to 100nm. Spin statistic estimations lead to an internal quantum efficiency of dye-based EL devices limited to 25%. On the contrary, the fluorescence of lanthanide complexes is based on an intramolecular energy transfer from the triplet of the organic ligand to the 4f energy states of the ion. Therefore, theoretical internal quantum efficiency is principally not limited. In this study, Powders of TPD, $Eu(TTA)_3(phen) and AlQ_3$ in a boat were subsequently heated to their sublimation temperatures to obtain the growth rates of 0.2~0.3nm/s. Organic electrolumnescent devices(OELD) with a structure of $glass substrate/ITO/Eu(TTA)_3(phen)/AI, glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AI and glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AIQ_3AI$ structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and Tris(8-hydroxyquinoline)Aluminum$(AlQ_3)$ as an electron transporting layer. Electroluminescent(EL) and current density-voltage(J-V) characteristics of these OELDs with various thickness of $Eu(TTA)_3(phen)$ layer were investigated. The triple-layer structure devices show the red EL spectrum at the wavelength of 613nm, which is almost the same as the photoluminescent(PL) spectrum of $Eu(TTA)_3(phen)$.It was found from the J-V characteristics of these devices that the current density is not dependent on the applied field, but on the electric field.

  • PDF