• Title/Summary/Keyword: Energies

Search Result 2,433, Processing Time 0.026 seconds

Basis Set Superposition Error on Structures and Complexation Energies of Organo-Alkali Metal Iodides

  • Kim, Chang-Kon;Zhang, Hui;Yoon, Sung-Hoon;Won, Jon-Gok;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2228-2234
    • /
    • 2010
  • Theoretical studies have been performed to study the binding characteristics of the alkali metal iodides, M-I (M = Li, Na, K), to poly(ethylene oxide) (PEO, I), poly(ethylene amine) (PEA, II) and poly(ethylene N-methylamine) (PEMA, III) via the B3LYP method. In this study, two types of complexes, singly-coordinated systems (SCS) and doubly-coordinated systems (DCS), were considered, and dissociation energies (${\Delta}E_D$) were calculated both with and without basis set superposition error (BSSE). Two types of counterpoise (CP) approach were investigated in this work, but the ${\Delta}E_D$ values corrected by using the function CP (fCP) correction exhibited an unusual trend in some cases due to deformation of the sub-units. This problem was solved by including geometry relaxation in the CP-corrected (GCP) interaction energy. On the other hand, the effects of the BSSE on the structures were very small when the complexes were re-optimized on the CP-corrected (RCP) potential energy surface (PES), even if the bond lengths between X and $M^+$ ($d_{{X-M}^+}$) and between $M^+$ and $I^-$ ($d_{M^+-I^-}$) were slightly lengthened. Therefore, neither the GCP nor RCP corrections made much difference to the dissociation energies.

mPW1PW91 Calculated and Experimental UV/IR Spectra of Unsymmetrical trans-Stilbenes

  • Choe, Jong-In;Park, Seong-Jun;Cho, Chul-Hee;Kim, Chul-Bae;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2175-2179
    • /
    • 2010
  • Quantum mechanical properties of unsymmetrical and unfunctionalized trans-stilbene derivatives 1-3, which had been prepared by solid-phase parallel syntheses, were characterized using mPW1PW91/6-311G(d,p) (hybrid HF-DF) calculations. The total electronic energies, normal vibrational modes, Gibbs free energies, and HOMOs and LUMOs of sixteen different structures from three different groups were analyzed. The energy differences between the HOMOs and LUMOs of the various unsymmetrical trans-stilbenes are in accord with the maximum absorption peaks of the experimental UV spectra of 1-3. The calculated normal vibrational modes of 21 were comparable with its experimental IR spectrum. The $\pi$-conjugation in the para-connected biphenyl group of 2 is better than the one in the metaconnected biphenyl group on the shorter side of 3.

Ab Initio Study on Complexes of Potassium with Methanol and Ethanol (메탄올과 에탄올의 K+착물에 대한 Ab Initio 연구)

  • Seong, Eun-Mo;Hwang, Ho-Jun
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.203-207
    • /
    • 2006
  • Ab initio calculations of the structure and the binding energies of K+(C2H5OH)n, (n=1~5) complexes were carried out with MP2/ full gen 6d and MP2/ 6-311G** methods. The stable structures of the complexes with n=2 to 5 were linear, trigonal, tetrahedral and trigonal bipyramid respectively. The binding energies of complexes were increased with the number of ligands, but the incremental binding energies were decreased. These results agreed well with the results of K+ complexes with other solvents.

Binding energy of H2 to MOF-5: A Model Study

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4199-4204
    • /
    • 2011
  • Using models simulating the environment of two distinct adsorption sites of $H_2$ in metal-organic framework-5 (MOF-5), binding energies of $H_2$ to MOF-5 were evaluated at the MP2 and CCSD(T) level. For organic linker section modeled as dilithium 1,4-benzenedicarboxylate ($C_6H_4(COO)_2Li_2$), the MP2 and CCSD(T) basis set limit binding energies are estimated to be 5.1 and 4.4 kJ/mol, respectively. For metal oxide cluster section modeled as $Zn_4O(CO_2H)_6$, while the MP2 basis set limit binding energy estimate amounts to 5.4 kJ/mol, CCSD(T) correction to the MP2 results is shown to be insignificant with basis sets of small size. Substitution of benzene ring with pyrazine ring in the model for the organic linker section in MOF-5 is shown to decrease the $H_2$ binding energy noticeably at both the MP2 and CCSD(T) level, in contrast to the previous study based on DFT calculation results which manifested substantial increase of $H_2$ binding energies upon substitution of benzene ring with pyrazine ring in the similar model.

Dissociation of the Phenylarsane Molecular Ion: A Theoretical Study

  • Kim, Sun-Young;Choe, Joong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2588-2592
    • /
    • 2010
  • The potential energy surfaces (PESs) for the primary and secondary dissociations of the phenylarsane molecular ion (1a) were determined from the quantum chemical calculations using the G3(MP2)//B3LYP method. Several pathways for the loss of $H{\cdot}$ were determined and occurred though rearrangements as well as through direct bond cleavages. The kinetic analysis based on the PES for the primary dissociation showed that the loss of $H_2$ was more favored than the loss of $H{\cdot}$, but the $H{\cdot}$. loss competed with the $H_2$ loss at high energies. The bicyclic isomer, 7-arsa-norcaradiene radical cation, was formed through the 1,2 shift of an $\alpha$-H of 1a and played an important role as an intermediate for the further rearrangements in the loss of $H{\cdot}$ and the losses of $As{\cdot}$ and AsH. The reaction pathways for the formation of the major products in the secondary dissociations of $[M-H]^+$ and $[M-H_2]^{+\cdot}$. were examined. The theoretical prediction explained the previous experimental results for the dissociation at high energies but not the dissociation at low energies.

MP2 Basis Set Limit Binding Energy Estimates of Hydrogen-bonded Complexes from Extrapolation-oriented Basis Sets

  • Park, Young-Choon;Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.386-390
    • /
    • 2007
  • By use of a simple two-point extrapolation scheme estimating the correlation energies of the molecules along with the basis sets specifically targeted for extrapolation, we have shown that the MP2 basis set limit binding energies of large hydrogen-bonded complexes can be accurately predicted with relatively small amount of computational cost. The basis sets employed for computation and extrapolation consist of the smallest correlation consistent basis set cc-pVDZ and another basis set made of the cc-pVDZ set plus highest angular momentum polarization functions from the cc-pVTZ set, both of which were then augmented by diffuse functions centered on the heavy atoms except hydrogen in the complex. The correlation energy extrapolation formula takes the (X+1)-3 form with X corresponding to 2.0 for the cc-pVDZ set and 2.3 for the other basis set. The estimated MP2 basis set limit binding energies for water hexamer, hydrogen fluoride pentamer, alaninewater, phenol-water, and guanine-cytosine base pair complexes of nucleic acid by this method are 45.2(45.9), 36.1(37.5), 10.9(10.7), 7.1(6.9), and 27.6(27.7) kcal/mol, respectively, with the values in parentheses representing the reference basis set limit values. A comparison with the DFT results by B3LYP method clearly manifests the effectiveness and accuracy of this method in the study of large hydrogen-bonded complexes.

DIFFUSION PIECEWISE HOMOGENIZATION VIA FLUX DISCONTINUITY RATIOS

  • Sanchez, Richard;Dante, Giorgio;Zmijarevic, Igor
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.707-720
    • /
    • 2013
  • We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion submeshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no submesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with submesh. This is not the case, however, for cell-centered finite differences.

Ab Initio Quantum Mechanical Investigation of H2(An+1X2n)H2(A=C or Si, X=O or S, n = 1-2)]; Energetics, Molecular Structures, and Vibrational Frequencies

  • Choi, Kun-Sik;Kim, Hong-Young;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.119-126
    • /
    • 2005
  • The geometrical parameters, vibrational frequencies, and relative energies of H$_2$(A$_{n+1}$X$_{2n}$)H$_2$ (A=C or Si, X=O or S, n = 1-2) oligomers have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest level of theory employed in this study is cc-pVTZ CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization and the relative energies.

Imaging Characteristics of Plastic Scintillating Fiber Screens for Digital Mammography

  • Choi, Won-Young;Walker, James K.;Jing, Zhenxue
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 1996
  • A scanning slot digital mammography system Luing a plastic scintillating fiber screen (SFS) is currently being developed To improve the x-ray interaction efficiency and absorption efficiency of an SFS, high Z elements can be added into the scintillating fiber core. In this paper, we investigated theoretically the zero spatial frequency detective quantum efficiency, DQE(0), and modulation transfer function, MTF(f), of three 2 cm thick SFSs made of polystyrene, polystyrene loaded with 5% by weight of lead, and polystyrene Loaded with 10% by weight of tin scintillating fibers. X-ray interaction efficiency, scintillating light intensity distributions and line spread functions were generated using Monte Carlo simulation. DQE(0) and MTF(f) were computed for x-ray energies ranging from 15 to 50 keV. Loading high Z elements into the SFS markedly increased the DQE(0). For x-ray energies used for mammovaphy, DQE(0) values of both high Z element loaded SFSs are about a factor of three higher than the DQE(0) of an Min-R screen. At mammographic x-ray energies, MTF(f) values of all three SFSs are Venter than 50% at 25 Ip/mm spatial frequency, and were found to be dominated by the 20 um individual scintillating fiber diameter used The results show that both hiP DQE(0) and spatial resolution can be achieved with the high Z element loaded SFSs, which make these SFSs attractive for use in a scanning slot detector for digital mammography.

  • PDF

Comparative Study on Seven Emotions and Four Energies (칠정(七情)과 사기(四氣)에 대한 비교 연구)

  • Choi, Sung-Wook;Kang, Jung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.596-599
    • /
    • 2005
  • Human health is affected by not only physical conditions but also mental and social well-being. Changes of human emotions show up as gestures, facial expressions and sweating. Human emotions are affected by such automatic nerve system functions as blood pressure, blood circulation speed, heart beats, pupillary reflex, fluid transfusion, muscular contraction and digestive organs, all of which influence the holistic diseases. The Oriental Medicine sees from a perspective of unity of divinity and men that human life activities are united in terms of their physical and mental functions. From such a perspective, human Five Organs are linked with Five Mental(五神) and Seven Emotions(七情), while they are affected by each other, influencing the life activities both directly and indirectly. Based on Confucianism, Sa-Sang Theory argues that human emotions can be categorized into four energy states and therefore, that human diseases and physiological conditions there of may be determined differently depending on the Four Energies(四氣). There seems to be some common points between Sa-Sang Theory and the conventional Oriental Medicine in that human emotions affect individuals' health conditions, so there seems to be much room for mutual complementation.