DOI QR코드

DOI QR Code

Ab Initio Quantum Mechanical Investigation of H2(An+1X2n)H2(A=C or Si, X=O or S, n = 1-2)]; Energetics, Molecular Structures, and Vibrational Frequencies

  • Published : 2005.01.20

Abstract

The geometrical parameters, vibrational frequencies, and relative energies of H$_2$(A$_{n+1}$X$_{2n}$)H$_2$ (A=C or Si, X=O or S, n = 1-2) oligomers have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest level of theory employed in this study is cc-pVTZ CCSD(T). Harmonic vibrational frequencies and IR intensities are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the dimerization and the relative energies.

Keywords

References

  1. Skancke, P. N.; Fogarasi, G.; Boggs, J. E. J. Mol. Struct. 1980, 62, 259 https://doi.org/10.1016/0022-2860(80)85242-2
  2. Kumar, P. N. V. P.; Wang, D.-X.; Lan, B.; Albright, T. A.; Jemmis, E. D. J. Mol. Struct. 1989, 194, 183
  3. Dorofeeva, O. V. Thermochimica Acta 1992, 194, 9 https://doi.org/10.1016/0040-6031(92)80002-E
  4. Lay, T. H.; Bozzelli, W. Chemical Physics Letters 1997, 268, 175 https://doi.org/10.1016/S0009-2614(97)00168-1
  5. Fink, M. J.; Haller, K. J.; West, R.; Michl, J. J. Am. Chem. Soc. 1984, 106, 822 https://doi.org/10.1021/ja00315a077
  6. Michalczyk, M. J.; Fink, M. J.; Haller, K. J.; West, R.; Michl, J. Organometallics 1986, 5, 531 https://doi.org/10.1021/om00134a023
  7. Grev, R. S.; Schaefer III, H. F. J. Am. Chem. Soc. 1987, 109, 6577 https://doi.org/10.1021/ja00256a002
  8. Liang, C.; Allen, L. C. J. Am. Chem. Soc. 1991, 113, 1878 https://doi.org/10.1021/ja00006a002
  9. Ma, J.; Inagaki, S. J. Phys. Chem. A 2000, 104, 8989 https://doi.org/10.1021/jp0014014
  10. Tamas, J.; Gomory, A.; Besenyei, I.; Nefedov, O. M.; Khabashesku, V. N.; Kerzina, Z. A.; Kagramanov, N. D.; Maltsev, A. K. J. Organomet. Chem. 1988, 349, 37 https://doi.org/10.1016/0022-328X(88)80435-2
  11. Tamas, J.; Gomory, A.; Besenyei, I.; Khabashesku, V. N.; Kerzina, Z. A.; Kagramanov, N. D.; Bragilevsky, I. O. J. Organomet. Chem. 1990, 387, 147 https://doi.org/10.1016/0022-328X(90)80019-V
  12. Lee, Y.-A.; Yoo, K.-H.; Park, K.-M.; Jung, O.-S. Bull. Korean Chem. Soc. 2002, 23, 1839 https://doi.org/10.5012/bkcs.2002.23.12.1839
  13. Kudo, T.; Nagase, S. J. Am. Chem. Soc. 1985, 107, 2589 https://doi.org/10.1021/ja00295a003
  14. O'Keeffee, M.; Gibbs, G. V. J. Chem. Phys. 1984, 81, 876 https://doi.org/10.1063/1.447723
  15. O'Keeffee, M.; Gibbs, G. V. J. Phys. Chem. 1985, 89, 4574 https://doi.org/10.1021/j100267a032
  16. Somogyi, A.; Tamas, J. J. Phys. Chem. 1990, 94, 5554 https://doi.org/10.1021/j100377a028
  17. Somogyi, A.; Tamas, J. J. Mol. Struct. 1991, 232, 123 https://doi.org/10.1016/0166-1280(91)85249-7
  18. Kudo, T.; Hashimoto, F.; Gordon, M. S. J. Comput. Chem. 1996, 17, 1163 https://doi.org/10.1002/(SICI)1096-987X(19960715)17:9<1163::AID-JCC9>3.0.CO;2-Q
  19. Frapper, G.; Saillard, J. Y. J. Am. Chem. Soc. 2000, 122, 5367 https://doi.org/10.1021/ja9935714
  20. Bromley, S. T.; Zwijnenburg, M. A.; Maschmeyer, Th. Surface Science 2003, 539, L554 https://doi.org/10.1016/S0039-6028(03)00813-6
  21. Dunning, Jr., T. H. J. Chem. Phys. 1989, 90, 1007 https://doi.org/10.1063/1.456153
  22. Woon, D. E.; Dunning, Jr. T. H. J. Chem. Phys. 1993, 98, 1358 https://doi.org/10.1063/1.464303
  23. Pulay, P. In Modern Theoretical Chemistry; Schaefer, H. F., Ed.; Plenum: New York, 1977; Vol. 4, p 153
  24. Goddard, J. D.; Handy, N. C.; Schaefer, H. F. J. Chem. Phys. 1979, 71, 1525 https://doi.org/10.1063/1.438494
  25. Yamaguchi, Y.; Osamura, Y.; Goddard, J. D.; Schaefer III, H. F. A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory; Oxfod University Press: New York, 1994
  26. Scheiner, A. C.; Scuseria, G. E.; Rice, J. E.; Lee, T. J.: Schaefer, H. F. J. Chem. Phys. 1987, 87, 5361 https://doi.org/10.1063/1.453655
  27. Scuseria, G. E. Chem. Phys. Lett. 1991, 176, 27 https://doi.org/10.1016/0009-2614(91)90005-T
  28. Saxe, P.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1987, 77, 5647
  29. Janssen, C. L.; Seidl, E. T.; Scuseria, G. E.; Hamilton, T. P.; Yamaguchi, Y.; Remington, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Fermann, J. T.; Allen, W. D.; Brocks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M.; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F. PSI 2.0.8; PSITECH Inc.: Watkinssvills, GA, U.S.A., 1994
  30. Grev, R. S.; Janssen, C. L.; Schaefer, H. F. J. Chem. Phys. 1991, 95, 5128 https://doi.org/10.1063/1.461680
  31. Shin, C.-H.; Park, K.-C.; Kim, B.-J.; Kim, S.-J. Bull. Korean Chem. Soc. 2002, 23, 337 https://doi.org/10.5012/bkcs.2002.23.2.337

Cited by

  1. Computational Study on Spirocyclic Compounds as Energetic Materials (I) vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.989
  2. Modeling the Interface of Platinum and α-Quartz(001): Implications for Sintering vol.120, pp.19, 2016, https://doi.org/10.1021/acs.jpcc.6b01403
  3. Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster vol.29, pp.10, 2005, https://doi.org/10.5012/bkcs.2008.29.10.1951
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. 고리 형태의 H2(Xn+1O2n)H2 (X=C 또는 Si) 소 중합체(n=1-5)의 열역학적 안정성 및 중합에너지에 대한 순 이론 양자역학적 연구 vol.52, pp.6, 2008, https://doi.org/10.5012/jkcs.2008.52.6.614
  6. Theoretical investigation on the IR spectra of four‐membered silicon oxide ring vol.111, pp.14, 2005, https://doi.org/10.1002/qua.22900