• Title/Summary/Keyword: Energetic application

Search Result 43, Processing Time 0.023 seconds

Basic Technologies for the Development of High Explosives (고폭화약 연구의 기술 분야)

  • Kim, Hyoun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.435-443
    • /
    • 2006
  • The objective of this paper is to provide fundamental information on the subject of high explosives not only to the explosive scientist but also to the chemical engineer. Technologies for the development of high explosives are divided into 5 areas: (1) synthesis of new energetics, (2) preparation of functional explosives, (3) formulation study of plastic bonded explosives, (4) application of high explosives to munitions, (5) demilitarization process. This paper outlines the basic technologies need to understand the high explosives.

Applications of Stokes Eigenfunctions to the Numerical Solutions of the Navier-Stokes Equations in Channels and Pipes

  • Rummler B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.63-65
    • /
    • 2003
  • General classes of boundary-pressure-driven flows of incompressible Newtonian fluids in three­dimensional (3D) channels and in 3D pipes with known steady laminar realizations are investigated respectively. The characteristic physical and geometrical quantities of the flows are subsumed in the kinetic Reynolds number Re and a parameter $\psi$, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form $\underline{u}=u_{L}+U,\;where\;u_{L}$ is the scaled laminar velocity and periodical conditions are prescribed for U in the unbounded directions. The objects of our numerical investigations are autonomous systems (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction, where these systems (S) were received by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u.

  • PDF

Plasma Treatment Effects on Tungsten Oxide Hole Injection Layer for Application to Inverted Top-Emitting Organic Light-Emitting Diodes

  • Kim, Joo-Hyung;Lee, You-Jong;Jang, Yun-Sung;Kim, Doo-Hyun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.354-355
    • /
    • 2009
  • In the fabrication of inverted top-emitting organic light emitting diodes (ITOLEDs), the sputtering process is needed for deposition of transparent conducting oxide (TCO) as top anode. Energetic particle bombardment, however, changes the physical properties of underlying layers. In this study, we examined plasma process effects on tungsten oxide ($WO_3$) hole injection layer (HIL). From our results, we suggest the theoretical mechanism to explain the correlation between the physical property changes caused by plasma process on $WO_3$ HIL and degradation of device performances.

  • PDF

Elements of Power Electronics and Its Roles as the Key Technology (전력전자의 요소기술 과 요소기술로서의 전력전자)

  • Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1067.1-1067.4
    • /
    • 2000
  • During the last three decades power electronics has gone through energetic technical evolution. The technical needs from wide area such as in industrial, commercial, consumer, aerospace and environmental applications have driven the environment favorably for the power electronics. In the future, two extreme technology-expansion trends are expected: one into low power, and the other into very high power. The former is based on the high frequency and the circuit miniature using VLSI circuit and surface mounting aiming for the system-on-chip (SOC) technology. The latter includes the application areas of power utility such as HVDC, FACTS and SVC and large science area of electrophsycal apparatus such as thermonuclear fusion, acclerators, and electric guns. This paper describes the technology status of some major elements which are available today and the key roles of the power electronics from view points of applications. The author would like to take this opportunity to raise discussions about the future technology development trend of power electronics in our country with the fellow power electronics engineers.

Application of Rumen Undegradable Protein on Early Lactating Dairy Goats

  • Lee, Mei-Chu;Hwang, Sen-Yuan;Chiou, Peter Wen-Shyg
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1549-1554
    • /
    • 2001
  • The application of rumen undegradable intake protein (UIP) on lactating dairy goats was studied. Thirty 2-year-old lactating dairy goats were selected and assigned to dietary treatments begun from the third week to the fourth month postpartum. Experimental diets were formulated into three, low (32% CP), med (35% CP) and high (38% CP), iso-nitrogenous (16% CP) and iso-energetic ($NE_L$ 1.68 Mcal/kg) UIP levels. Results showed that feed intake was not significantly different among the treatment groups. The milk yield in the High UIP group (3.17 kg) was significantly higher than the med (2.95 kg) and low UIP (2.45 kg) groups (p<0.05). The milk compositions, milk fat, milk lactose and milk solids-non-fat (SNF) showed no significant differences among the three treatment groups. The milk protein however was significantly (p<0.05) lower in the low UIP than in the other treatment groups. The milk urea-N was significantly (p<0.05) higher in the low UIP than in the other treatment groups. The mean serum aspartate amino transferase (AST), urinary-N and total protein concentrations were significantly (p<0.05) lower in the high and the med UIP groups than in the low UIP group.

Influence of SiO2 Content on Wet-foam Stability for Creation of Porous Ceramics

  • Bhaskar, Subhasree;Park, Jung Gyu;Cho, Gae Hyung;Seo, Dong Nam;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.511-515
    • /
    • 2014
  • The thermodynamic instability of bubbles in wet-foam colloidal suspension is due to the substantial area of their gas/liquid interface. Several physical processes lead to gas diffusion from smaller to larger bubbles, resulting in a coarsening and Ostwald ripening of wet foam. This includes a narrowing of the bubble size distribution. The distribution and microstructure of porous ceramics, the adsorption free energy and Laplace pressure of $Al_2O_3$ particle-stabilized colloidal suspension, and $SiO_2$ content were investigated for tailoring the bubble size. Wet-foam stability of more than 80% is related to the degree of hydrophobicity with contact angles of $62-70^{\circ}$ achieved from the surfactant. The contact angle replaces part of the highly energetic interface and lowers the free energy of the system. This leads to an apparent increase in the surface tension (26-33 mN/m) of the colloidal suspension.

Predictive analysis on explosive performance of methylnitroimidzole derivatives (메틸나이트로이미다졸 유도체의 화약성능 예측분석)

  • Rim, One Kwon
    • Analytical Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.347-352
    • /
    • 2015
  • Chemical properties such as heat of formation and density of methylnitroimidazole derivatives were predicted and analyzed by using density functional theory (DFT). Successive addition of energetic nitro groups into an imidazole ring increases both the heat of formation and the density. Using the chemical property values computed by DFT, explosive performance was analyzed with the Cheetah program, and compared with those of TNT, RDX, and HMX, which are currently used widely in military systems. When both C-J pressure and detonation velocity were used as explosive performance, methyldinitroimidazole derivatives show better performance than TNT, while methyltrinitroimidzole is almost close to RDX. Since methylnitroimidazole derivatives have a good merit, i.e. low melting point for melt loading, they are forecasted to be used widely in various military and civilian application.

Development of the formulation and the process of DXD-19 sheet explosive (판상 화약 DXD-19 조성 및 성형 공정개발)

  • Cheun Young Gu;Lee Jin Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.129-139
    • /
    • 2004
  • DXD-19 is a flexible sheet explosive, which is a new polymer-bonded explosives(PBX's). DXD-19 is relatively insensitive and can be extruded into various configurations to be applied to munitions. A typical application includes multi-point initiation for the warhead, cutting/severance devices and transfer lines. The DXD-19 composition employs a binder system derived from the thermoplastic elastomer(HyTemp 4454) containing $5\%$ OH terminated with isocyanate curable for increasing mechanical properties. The use of an elastomer CAB increases its mechanical properties and the use of an energetic plasticizer BDNPF/BDNPA(F/A) improves the process ability as well as energy contents. The composition of the extruded DXD-19 formulation is formed $\%$ weight of $PETN/HyTemp/ATEC/(F/A)/CAB=72\~73/12\~13/6\~7/6\~7/1\~2$. Our safety tests of DXD-19 shows Insensitivity to an impact test and friction test, good thermal stability and excellent mechanical properties.

Enhanced Biodegradation of 2,4,6-Trinitrotoluene (TNT) with Various Supplemental Energy Sources

  • Park, Chulhwan;Kim, Tak-Hyun;Kim, Sangyong;Kim, Seung-Wook;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.695-698
    • /
    • 2002
  • The biodegradation of 2,4,6-trinitrotoluene (TNT) was performed on a laboratory scale using P. putida originally isolated from explosive-contaminated soil. One hundred mg/1 of TNT was completely degraded within 20 h under optimum conditions. Various supplemental energy sources (carbon sources, nitrogen sources, and surfactant) were tested, with the main objective of identifying an inexpensive source and enhancing the degradation rate for large-scale biodegradation. Based on the degradation rate, molasses was selected as a possible supplemental carbon source, along with NH$_4$Cl and Tween 80 as a nitrogen source and surfactant, respectively. The degradation rate increased about 3.3 fo1d when supplemental energy sources were added and the degradation rate constant increased from 0.068 h$\^$-1/ to 0.224 h$\^$-1/. These results appear to be promising in application of the process to TNT-contaminated soil applications.

Extensive investigations of photon interaction properties for ZnxTe100- x alloys

  • Singh, Harinder;Sharma, Jeewan;Singh, Tejbir
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1364-1371
    • /
    • 2018
  • An extensive investigation of photon interaction properties has been made for $Zn_xTe_{100-x}$ alloys (where x = 5, 20, 30, 40, 50) to explore its possible use in sensing and shielding gamma radiations. The results show better and stable response of ZnTe alloys for various photon interaction properties over the wide energy range, with an additional benefit of ease in fabrication due to lower melting points of Zn and Te. Mass attenuation coefficient values show strong dependence on photon energy as well as composition. Effective atomic number has maximum value for $Zn_5Te_{95}$ and lowest for $Zn_{50}Te_{50}$ in the entire energy region. The alloy sample with maximum $Z_{eff}$ shows minimal value of $N_e$ and vice versa. Mean free path follows inverse trend as observed for mass attenuation coefficient. The exposure and energy absorption buildup factors depend upon photon energy, penetration thickness and composition (effective atomic number) of $Zn_xTe_{100-x}$ alloys. It finds its application for sensing and shielding from highly energetic and highly penetrating photons at sites where radioactive materials were used and visibility of material is not a big constraint. Further, energy down conversion property of ZnTe alloys with subsequent emission in green band suggests its potential use in sensing gamma photons.