• Title/Summary/Keyword: Endophytic relationship

Search Result 17, Processing Time 0.023 seconds

Diversity, Distribution, and Host Plant of Endophytic Fungi: A Focus on Korea

  • Ju-Kyeong Eo;Jae-Wook Choi;Ahn-Heum Eom
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.399-407
    • /
    • 2022
  • Endophytic fungi occupy inner plant tissues, which results in various interactions between the fungus and host. Studies on endophytic fungi have been conducted in Korea for over 30 years. This paper summarizes the published results of those studies. The endophytic fungi of approximately 132 plant species in Korea have been studied since the 1990s, resulting in over 118 publications. The host plants featured in these studies comprised 3 species of mosses, 34 species of woody plants, and 95 species of herbaceous plants. At the family level, the most studied plants were members of the Poaceae family, covering 18 species. Regionally, these studies were conducted throughout Korea, but over half of the studies were conducted in Gyeongsangbuk-do, Gangwon-do, and Chungcheongnam-do. Relatively few studies have been conducted in a metropolis such as Seoul. We confirmed 5 phyla, 16 classes, 49 orders, 135 families, 305 genera, and 855 taxa of endophytic fungi, excluding Incertae sedis, whose relationship with others are unknown. Most of the endophytic fungi belonged to Ascomycota (93.2%), and a few belonged to Basidiomycota (3.6%). Since the diversity of endophytic fungi differs depending on the host plant, plant tissue, and distribution region, future studies should be conducted on multiple host plants and in various regions. Future studies on endophytic fungi are expected to broaden, including genomics and taxonomic and ecological studies of secondary metabolites.

Host Specificity of Endophytic Kelp Gametophytes (내부공생 켈프 배우체의 숙주 선택)

  • Kim, Gwang-Yong;Choe, Tae-Seob;Lee, Yeong-Ho
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Farmed kelp gametophytes were previously observed to be living endophytically in filamentous red algae. The interactions of two farmed kelp species and six red algae were examined in laboratory culture. Undaria pinnatifida (Harvey) Suringar and Laminaria religiosa Miyabe demonstrated the differing abilities of zoospores to become endophytic in four host red algae and neither kelp became endophytic in two non-filamentous red algae. There was a strong seasonal component regarding infectiousness that is associated with the changes in fron erosion in U. pinnatifida from April to June. At the same time, L. religiosa showed no significant changes in frond erosion, and there were no apparent changes in infection levels in the two species they were able infect. This study indicated clear differences between two keip species with regard to their symbiotic relationship to red algae in terms of host specificity and preference of kelp gametophytes.

Diversity of Foliar Endophytic Fungi Inhabiting Coniferous Trees in Korea

  • Eo, Ju-Kyeong;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.205-211
    • /
    • 2018
  • Fungal endophytes are defined as fungi inhabiting plant tissues, causing no apparent disease. As the agricultural and ecological importance of endophytes has increased, many studies have been performed on various aspects, ranging from basic identification, taxonomy, and evolution to secondary metabolites with potential for human use. In the Korean Peninsula, conifers are the most commonly found evergreen trees, with approximately 30 to 60 reported taxa. Studies on the effect of conifer-associated endophytes on the host plants are required for the preservation and conservation of coniferous forests which decline by climate change and deforestation. This review summarizes the diversity of endophytic fungi in coniferous trees of Korea and their relationship with host plants.

Characterization of Six Novel Endophytic Fungi Isolated from Leaves of Plants Inhabiting Jeju Island (제주도에 서식하는 식물 잎에서 분리된 6종의 국내 미기록 내생균 보고)

  • Park, Hyeok;Choi, Young-Joon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.405-414
    • /
    • 2018
  • Endophytic fungi were isolated from the leaves of diverse plants inhabiting Jeju Island, Korea. The fungal isolates were identified through phylogenetic analyses incorporating nucleotide sequences derived from the internal transcribed spacer region, large subunit region of ribosomal DNA, and beta-tubulin gene. Our results identified six endophytic fungi previously unknown in Korea namely, Diaporthe goulteri, Diaporthe vaccini, Rhizosphaera pini, Valsa friesii, Xylaria primorskensis, and Zalerion arboricola were identified. Here, we present their cultural and morphological characteristics and phylogenetic relationship.

Relationship between the Production of Fermentational Off-flavor and Presence of Microbial Endophytes in Bloody Watermelon (수박의 이상 발효(피수박)와 내생세균의 존재와의 연관성)

  • Choi, Jae-Eul;Choi, Chun-Hwan;Ryuk, Jln-Ah;An, Gil-Hwan;Hwang, Yong-Soo
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.285-289
    • /
    • 2004
  • The bloody watermelon exhibiting dark red and fermentation off-flavor results in a great economic loss. As an effort to clarify the cause of the bloody watermelon, relationship between the fermentational off-flavor and the presence of endophytic bacteria was studied. The number of endophytes was 2.2-37.0 ${\times}10^3$ cfu/g fw (fresh weight) in normal watermelons, compared to 1.26-1.75 ${\times}10^6$ cfu/g fw in bloody ones. Seventeen bacteria among 56 isolates from bloody watermelons could induce bloody watermelons. The bacteria responsible for bloody watermelons were mainly Gram negative: aerobic Pseudomonas spp and some anaerobic bacteria. The results in this study strongly suggested that the bloody watermelons were produced by abnormal fermentation and growth of endophytic Gram negative bacteria.

Endophytic Association of Trichoderma asperellum within Theobroma cacao Suppresses Vascular Streak Dieback Incidence and Promotes Side Graft Growth

  • Rosmana, Ade;Nasaruddin, Nasaruddin;Hendarto, Hendarto;Hakkar, Andi Akbar;Agriansyah, Nursalim
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.180-186
    • /
    • 2016
  • Trichoderma species are able to persist on living sapwood and leaves of cacao (Theobroma cacao) in an endophytic relationship. In this research, we evaluated the ability of Trichodema asperellum introduced at the incision site in the bark for side grafting with the concentration of 4 g/10 mL, 4 g/100 mL, and 4 g/1,000 mL (suspended in water) in suppressing vascular streak dieback (VSD) incidence and promoting growth of side grafts in the field. The incidence of VSD in two local clones of cacao, MCC1 and M04, without application of T. asperellum was 71.2% and 70.1% at 21 wk after grafting, respectively. However, when the two clones were treated with a concentration of 4 g/10 mL T. asperellum, the incidence was 20.6% and 21.7%, respectively, compared to 29.1% and 20.9% at 4 g/100 mL and 18.2% and 15.6% at 4 g/1,000 mL. By comparing to the control, the treatment with the same concentrations of T. asperellum listed above, the total number of stomata in MCC1 decreased by 41.9%, 30.2%, and 14.0% and in M04 by 30.5%, 21.9%, and -2.5% (exception), respectively. Otherwise, the total area of stomata opening increased by 91.4%, 99.7%, and 28.6% in MCC1 and by 203.8%, 253.5%, and 35.9% in M04, respectively. Furthermore, the number of buds and branches treated with a mixture concentration on the the two clones increased by 90.7% and 21.7%, respectively. These data showed that the application of T. asperellum to cacao scions while grafting can decrease VSD incidence in side grafts and increase growth of grafts in addition to decreasing total number of stomata, increasing total area of opened stomata, and increasing number of buds and branches.

Diversity of Endophytic Fungi Isolated from Hydrophytes in Wetland of Nakdong River (낙동강 지류의 하천 습지에 자생하는 수생식물에서 분리된 내생균류의 다양성)

  • You, Young-Hyun;Lee, Myung-Chul;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.43 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Endophytic fungal strains were isolated from 5 aquatic plant species (Trapa japonica, Miscanthus sacchariflorus, Oenanthe javanica, Typha orientalis and Zizania latifolia) native to river wetland of tributary in Nakdong river. Total 34 strains were purely isolated, and then its internal transcribed spacer (ITS) regions were amplified. After that, phylogenetic analysis based on ITS sequences and deduction of diversity indices were done. Fungal isolates were belonged to 17 genera, concretely in Acremonium, Alternaria, Aspergillus, Cladosporium, Emericellopsis, Fusarium, Galactomyces, Leptosphaeria, Microsphaeropsis, Penicillium, Peyronellaea, Phoma, Pseudeurotium, Rhizomucor, Talaromyces, Trematosphaeria and Zalerion. Especially, fungal isolates were distributed intensively in genera Alternaria and Talaromyces. This study deals with the diversity of endophytic fungal species that showing symbiotic relationship with their host aquatic plants.

The Occurrence of Laminarionema elsbetiae (Phaeophyceae) on Rhodymenia pseudopalmata (Rhodophyta) from the Patagonian Coasts of Argentina: Characteristics of the Relationship in Natural and Experimental Infections, and Morphology of the Epi-endophyte in Unialgal Free Cultures

  • Gauna, M. Cecilia;Parodi, Elisa R.;Caceres, Eduardo J.
    • ALGAE
    • /
    • v.24 no.4
    • /
    • pp.249-256
    • /
    • 2009
  • The occurrence of Laminarionema elsbetiae (Ectocarpaceae, Phaeophyceae), as epi-endophyte of Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta), described from Santa Isabel, Rawson, Argentina. L. elsbetiae grows in the host tissues forming epi-endophytic relationship in the epidermal, cortical and medullar layers. Epiphytic thalli of L. elsbetiae were unbranched filaments emerging from hostis surface. Reproductive structures of L. elsbetiae on the host were absent. On the contrary, free cultured individuals formed different reproductive structures. Macrozoosporangia containing a single large motile zoospore originated from vegetative cells, they were conical to cylindrical in shape, 30-50 ${\mu}m$ in length and 18-20 ${\mu}m$ in wide. Uniseriate plurilocular zoosporangia were cylindrical shape, 40 ${\mu}m$ in length and 10-13 ${\mu}m$ in wide. Sexual fusion was not seen. In mixed cultures of L. elsbetiae with R. pseudopalmata fronds, L. elsbetiae infected the host, grew as in natural host and, formed macrosporangia between host subcortical cells. Gametophytes of L. elsbetiae were filaments with diffuse growth, branched with a branch pattern alternate or opposite. Gametangia were plurilocular, uni or biseriate and lateral. When mature they contained 2 to 6 isogametes. The presence L. elsbetiae on R. pseudopalmata could be defined as an epi-endophytic relationship. The percentage of infection of R. pseudopalmata thalli by L. elsbetiae was 34%.A25% of the infected thalli presented a low, non-symptomatic level infection, whereas a 62% and a 13% of them exhibited respectively moderate and high indexes of infection.

Prospecting endophytic colonization in Waltheria indica for biosynthesis of silver nanoparticles and its antimicrobial activity

  • Nirmala, C.;Sridevi, M.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Endophytes ascertain a symbiotic relationship with plants as promoters of growth, defense mechanism etc. This study is a first report to screen the endophytic population in Waltheria indica, a tropical medicinal plant. 5 bacterial and 3 fungal strains in leaves, 3 bacterial and 1 yeast species in stems were differentiated morphologically and identified by biochemical and molecular methods. The phylogenetic tree of the isolated endophytes was constructed using MEGA X. Silver nanoparticles were biosynthesized from a rare endophytic bacterium Cupriavidus metallidurans isolated from the leaf of W. indica. The formation of silver nanoparticles was confirmed by UV-Visible spectrophotometer that evidenced a strong absorption band at 408.5 nm of UV-Visible range with crystalline nature and average particle size of 16.4 nm by Particle size analyzer. The Fourier Transform Infra-Red spectrum displayed the presence of various functional groups that stabilized the nanoparticles. X-ray diffraction peaks were conferred to face centered cubic structure. Transmission Electron Microscope and Scanning Electron Microscope revealed the spherical-shaped, polycrystalline nature with the presence of elemental silver analyzed by Energy Dispersive of X-Ray spectrum. Selected area electron diffraction also confirmed the orientation of AgNPs at 111, 200, 220, 311 planes similar to X-ray diffraction analysis. The synthesized nanoparticles are evaluated for antimicrobial activity against 7 bacterial and 3 fungal pathogens. A good zone of inhibition was observed against pathogenic bacteria than fungal pathogens. Thus the study could hold a key aspect in drug discovery research and other pharmacological conducts of human clinical conditions.

Identification of Endophytic Bacteria Isolated from Rusty-colored Root of Korean Ginseng (Panax ginseng) and Its Induction (적변삼으로부터 분리한 내생세균의 동정 및 적변 유발)

  • Choi, Jae-Eul;Ryuk, Jin-Ah;Kim, Jin-Hee;Choi, Chun-Hwan;Chun, Jong-Sik;Kim, Young-Jun;Lee, Hyang-Burm
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • While the rusty-colored root is common in ginsengs culture and, often results in a severe economic loss, the major factors have not been found. This study was focused on the determination of a potential relationship between rusty root and endophytic bacteria. The number of endophytes was $9.6\;{\times}\;10^1{\sim}1.5\;{\times}\;10^2\;cfu/g$ fw in normal ginseng roots compared to $3.7\;{\times}\;10^6{\sim}5.1\;{\times}\;10^7\;cfu/g$ fw in rusty ones. Of 31 isolates from rusty ginseng roots, twenty-four isolates repeatedly induced severe to moderate rust on root while seven isolates induced slight rust. The bacteria responsible for rusty ginseng roots were mainly Gram negative aerobic. Rust inducing bacteria were identified as Agrobacterium tumefaciens, A. rhizogenes, Burkholderia phenazinium, Ensifer adharens, Lysobacter gummosus, Microbacterium luteolum, M. oxydans, Pseudomonas marginalis, P. veronii, Pseudomonas sp., Rhizobium leguminosarum, R. tropica, Rhodococcus erythropolis, Rh. globerulus, Variovorax paradoxus on the basis of bacteriological characters and 16S rDNA sequences analysis. The results in this study strongly suggested that the rusty ginseng roots were produced by infection and growth of endophytic bacteria.