DOI QR코드

DOI QR Code

Endophytic Association of Trichoderma asperellum within Theobroma cacao Suppresses Vascular Streak Dieback Incidence and Promotes Side Graft Growth

  • Rosmana, Ade (Cocoa Research Group, Faculty of Agriculture, Hasanuddin University) ;
  • Nasaruddin, Nasaruddin (Cocoa Research Group, Faculty of Agriculture, Hasanuddin University) ;
  • Hendarto, Hendarto (Cocoa Research Group, Faculty of Agriculture, Hasanuddin University) ;
  • Hakkar, Andi Akbar (Cocoa Research Group, Faculty of Agriculture, Hasanuddin University) ;
  • Agriansyah, Nursalim (Cocoa Research Group, Faculty of Agriculture, Hasanuddin University)
  • Received : 2016.05.04
  • Accepted : 2016.07.07
  • Published : 2016.09.30

Abstract

Trichoderma species are able to persist on living sapwood and leaves of cacao (Theobroma cacao) in an endophytic relationship. In this research, we evaluated the ability of Trichodema asperellum introduced at the incision site in the bark for side grafting with the concentration of 4 g/10 mL, 4 g/100 mL, and 4 g/1,000 mL (suspended in water) in suppressing vascular streak dieback (VSD) incidence and promoting growth of side grafts in the field. The incidence of VSD in two local clones of cacao, MCC1 and M04, without application of T. asperellum was 71.2% and 70.1% at 21 wk after grafting, respectively. However, when the two clones were treated with a concentration of 4 g/10 mL T. asperellum, the incidence was 20.6% and 21.7%, respectively, compared to 29.1% and 20.9% at 4 g/100 mL and 18.2% and 15.6% at 4 g/1,000 mL. By comparing to the control, the treatment with the same concentrations of T. asperellum listed above, the total number of stomata in MCC1 decreased by 41.9%, 30.2%, and 14.0% and in M04 by 30.5%, 21.9%, and -2.5% (exception), respectively. Otherwise, the total area of stomata opening increased by 91.4%, 99.7%, and 28.6% in MCC1 and by 203.8%, 253.5%, and 35.9% in M04, respectively. Furthermore, the number of buds and branches treated with a mixture concentration on the the two clones increased by 90.7% and 21.7%, respectively. These data showed that the application of T. asperellum to cacao scions while grafting can decrease VSD incidence in side grafts and increase growth of grafts in addition to decreasing total number of stomata, increasing total area of opened stomata, and increasing number of buds and branches.

Keywords

References

  1. Guest D, Keane PJ. Vascular-streak dieback: a new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology 2007;97:1654-7. https://doi.org/10.1094/PHYTO-97-12-1654
  2. Samuels GJ, Ismaiel A, Rosmana A, Junaid M, Guest D, McMahon P, Keane P, Purwantara A, Lambert S, RodriguezCarres M, et al. Vascular streak dieback of cacao in Southeast Asia and Melanesia: in planta detection of the pathogen and a new taxonomy. Fungal Biol 2012;116:11-23. https://doi.org/10.1016/j.funbio.2011.07.009
  3. Pawirosoemardjo S, Purwantara A. Symptoms of vascular streak dieback disease on cocoa in Indonesia. Menara Perkebunan 1989;57:74-8.
  4. Rosmana A. Vascular streak dieback: a new disease on cocoa in Sulawesi. In: Prosiding Seminar Ilmiah dan Pertemuan Tahunan PEI dan PFI XVI Komda Sul-Sel; 2005 May 27; Makassar, Indonesia. p. 1-7.
  5. Syahnen MS. Recomendations of VSD disease control on cocoa in Pasaman, West Sumatra [Internet]. Medan: BBPPTP Medan; 2013.
  6. BBPPTP Ambon. Distribution map of VSD (Oncobasidium theobromae) infestation Q 1 2014 in working Ambon. Ambon: BBPPTP Ambon; 2014.
  7. Keane PJ. Epidemiology of vascular-streak dieback of cocoa. Ann Appl Biol 1981;98:227-41. https://doi.org/10.1111/j.1744-7348.1981.tb00756.x
  8. Taylor M. The World Cocoa Situation. In: International Forum in Cocoa; 1998 Oct 28-29; Lima, Peru. London: LMC Internationall; 1998.
  9. Febriantomo A. Experience of VSD (vascular-streak dieback) disease control in Kendeng Lembu field. In: Prosiding Simposium Kakao 2012; 2012 Nov 5-8; Padang, Indonesia. p. 148-59.
  10. Susilo AW, Anita-Sari I. Relationship between the shoot characteristics and plant resistance to vascular-streak dieback on cocoa. Pelita Perkebunan 2014;30:181-9.
  11. Susilo AW, Mawardi S, Sudarsianto. Yield performance of the cocoa (Theobroma cacao L.) clones of Sca 6 and DRC 15 resistant to vascular-streak dieback. Pelita Perkebunan 2009;25:76-87.
  12. Prawoto AA, Santoso TI, Marifah, Hartanto L, Sutikno. Terpene profile, leaf anatomy, and enzyme activity of resistant and susceptible cocoa clones to vascular streak dieback disease. Pelita Perkebunan 2013;29:197-209.
  13. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species: opportunistic avirulent plant symbionts. Nat Rev Microbiol 2004;2:43-56. https://doi.org/10.1038/nrmicro797
  14. Samuels GJ, Ismaiel A. Trichoderma evansii and T. lieckfeldtiae: two new T. hamatum-like species. Mycologia 2009;101:142-56. https://doi.org/10.3852/08-161
  15. Bailey BA, Strem MD, Wood D. Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 2009;113:1365-76. https://doi.org/10.1016/j.mycres.2009.09.004
  16. Rosmana A, Samuels GJ, Ismaiel A, Ibrahim ES, Chaverri P, Herawati Y, Asman A. Trichoderma asperellum: a dominant endophyte species in cacao grown in Sulawesi with potential for controlling vascular streak dieback disease. Trop Plant Pathol 2015;40:19-25. https://doi.org/10.1007/s40858-015-0004-1
  17. Hakkar AA, Rosmana A, Rahim MD. Control of Phytophthora pod rot disease on cacao using endophytic fungi Trichoderma asperellum. J Fitopatol Indonesia 2014; 11:139-44.
  18. Silla F, Gonzalez-Gil A, Gonzalez-Molina ME, Mediavilla S, Escudero A. Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: effects of species and leaf age. Ann For Sci 2010;67:108. https://doi.org/10.1051/forest/2009093
  19. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 2003;100:15649-54. https://doi.org/10.1073/pnas.2533483100
  20. Hermosa R, Rubio MB, Cardoza RE, Nicolas C, Monte E, Gutierrez S. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 2010;16:69-80.
  21. Nasaruddin. Endophytism of Trichoderma and its impact on growth of cocoa shoot graft. In: Sulawesi Interternational Seminar on Cocoa; 2013 Jun 26-28; Makassar, Indonesia.
  22. Zamioudis C, Pieterse CM. Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 2012;25:139-50. https://doi.org/10.1094/MPMI-06-11-0179
  23. Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ, Vinyard BT, Holmes KA. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 2008;46:24-35. https://doi.org/10.1016/j.biocontrol.2008.01.003
  24. Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA. Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 2011;24:336-51. https://doi.org/10.1094/MPMI-09-10-0221
  25. Atanasova L, Druzhinina IS, Jaklitsch WM. Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma: biology and applications. Boston (MA): CABI; 2013. p. 10-42.
  26. Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, et al. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 2006;50:307-21. https://doi.org/10.1007/s00294-006-0091-0
  27. Shoresh M, Harman GE. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 2008;147:2147-63. https://doi.org/10.1104/pp.108.123810
  28. Alfano G, Ivey ML, Cakir C, Bos JI, Miller SA, Madden LV, Kamoun S, Hoitink HA. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 2007;97:429-37. https://doi.org/10.1094/PHYTO-97-4-0429
  29. Harman GE, Björkman T, Ondik K, Shoresh M. Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlooks Pest Manag 2008;19:24-9. https://doi.org/10.1564/19feb08
  30. Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012;158:17-25. https://doi.org/10.1099/mic.0.052274-0
  31. Chowdappa P, Mohan Kumar SP, Jyothi Lakshmi M, Upreti KK. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 2013;65:109-17. https://doi.org/10.1016/j.biocontrol.2012.11.009
  32. Martínez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees CM. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growthpromoting activity on melon plants. J Chem Ecol 2014;40:804-15. https://doi.org/10.1007/s10886-014-0478-1
  33. Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 2012;158:139-46. https://doi.org/10.1099/mic.0.052621-0
  34. Shu S, Guo SR, Yuan LY. A review: polyamines and photosynthesis. In: Najafpour MM, editor. Advances in photosynthesis: fundamental aspects. Rijeka: InTech; 2013. p. 439-64.
  35. Andreadakis A, Kotzabasis K. Changes in the biosynthesis and catabolism of polyamines in isolated plastids during chloroplast photodevelopment. J Photochem Photobiol B 1996;33:163-70. https://doi.org/10.1016/1011-1344(95)07240-3
  36. Della Mea M, Di Sandro A, Dondini L, Del Duca S, Vantini F, Bergamini C, Bassi R, Serafini-Fracassini D. A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a lightdependent way. Planta 2004;219:754-64.
  37. Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 2010;10:34. https://doi.org/10.1186/1471-2229-10-34