• Title/Summary/Keyword: Endophytic bacterium

Search Result 24, Processing Time 0.032 seconds

Evaluation of Endophytic Colonization of Citrus sinensis and Catharanthus roseus Seedlings by Endophytic Bacteria

  • Lacava Paulo Teixeira;Araujo Welington Luiz;Azevedo Joao Lucio
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.11-14
    • /
    • 2007
  • Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis(CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus rose us using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

Effect of Endophytic Bacterium Inoculation on Seed Germination and Sprout Growth of Tartary Buckwheat

  • Briatia, Xoxiong;Khanongnuch, Chartchai;Azad, Md Obyedul Kalam;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.712-721
    • /
    • 2016
  • This experiment was conducted to investigate the endophytic bacterium Herbaspirillum spp effect on seed germination and sprout growth of tartary buckwheat. Inoculant concentration (%v/v) and seed soaking time were applied 10, 20 and 40% and 0, 4, 8, 12 hour, respectively. The experiment was carried out in a growth chamber maintained temperature at 20, 25 and $30^{\circ}C$ without light for 7 days. Results showed that, 10 to 20% (v/v) inoculant concentration by 4 to 8 h seed soaking time at $20^{\circ}C$ temperature increased seed vigor rate and total seed germination rate 80-95% and 90-100%, respectively. On the other and, seed inoculation with Herbaspirillum spp. increased hypocotyl length (13-15 cm), root length (8-11 cm), total fresh weight (135-296 g) and total dry weight (7-10 g), compared to control. It is indicated that sprouts growth and yield depends on inoculation concentrations, seed soaking time and temperature. Therefore, it would be suggested that seed inoculation with Herbaspirillum spp. at concentration of 10 to 20% (v/v), soaking time 4 to 8 h and temperature $20^{\circ}C$ promote seed germinations and sprout growth rate of tartary buckwheat.

Effect of Endophytic Bacterium Inoculation on Total Polyphenol and Flavonoid Contents of Tartary Buckwheat Sprouts

  • Briatia, Xoxiong;Azad, Md Obyedul Kalam;Khanongnuch, Chartchai;Woo, Sun Hee;Park, Cheol Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.57-63
    • /
    • 2018
  • The effects of endophytic microbial inoculation and temperature on the phenolic content of tartary buckwheat (TP) sprouts were investigated. TP seeds were inoculated with Herbaspirillum spp. at concentrations (%v/v) of 0 (control), 10, 20, and 40% at 20, 25, and $30^{\circ}C$ in a growth chamber for seven days. It was observed that the phenolic content (PC) including flavonoid, rutin, and tanin increased with an increase in inoculant rate at $20^{\circ}C$, whereas the PC content increased with an increase in temperature regardless of the inoculant rate. Therefore, it is suggested that increasing the inoculant rate is effective at achieving higher phenolic contents when plants are grown at lower temperatures.

GC-MS Analysis of Endophytic Bacteria Isolate Acalypha indica L. Compounds as Antibacterial

  • Dwyana Zaraswati;Annisa Andi;Johannes Eva;Wardhani Riuh
    • Mass Spectrometry Letters
    • /
    • v.15 no.3
    • /
    • pp.158-165
    • /
    • 2024
  • Pneumonia is an acute respiratory infection that primarily affects the lungs and is caused by various microorganisms, including viruses, fungi, and bacteria. Klebsiella pneumoniae, a multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterium, is a leading cause of widespread pneumonia. This study aimed to identify endophytic bacteria from the leaves of Acalypha indica L. and evaluate their antibacterial properties through both in vitro and in silico approaches. The objectives included isolating endophytic bacteria from Acalypha indica L., testing their antibacterial activity against Klebsiella pneumoniae, identifying the selected bacterial isolates using molecular techniques, analyzing their secondary metabolites via gas chromatography-mass spectrometry (GC-MS), and performing in silico molecular docking studies. The study identified BE 4, an endophytic bacterial isolate of Bacillus pumilus, as exhibiting the most potent antibacterial activity against Klebsiella pneumoniae. GC-MS analysis of the ethyl acetate extract of this isolate revealed 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester as the primary metabolite component. Furthermore, molecular docking analysis identified two natural compound ligands, 1,2-benzenedicarboxylic acid, diethyl ester (-6.5 kcal/mol), and lilial (-6.2 kcal/mol), as having potential efficacy against drugresistant bacteria responsible for pneumonia. These findings suggest that endophytic bacteria and their bioactive compounds could serve as promising candidates for the development of new treatments against drug-resistant pneumonia.

Complete genome sequence of Bacillus velezensis YC7010, an endophytic bacterium with plant growth promoting, antimicrobial and systemic resistance inducing activities in rice (식물생육촉진, 항균 및 저항성 유도 효과를 나타내는 내생세균 Bacillus velezensis YC7010의 유전체 염기서열)

  • Harun-Or-Rashid, Md.;Hwang, Jeong Hyeon;Chung, Young Ryun
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.329-331
    • /
    • 2017
  • Bacillus velezensis YC7010 is an endophytic bacterium isolated from the rice rhizosphere in Jinju, Republic of Korea, with properties conductive to growth promotion, antibiosis and induced systemic resistance to significant, soil-borne rice fungal and bacterial pathogens. The genome of B. velezensis YC7010 comprises a 3,975,683 bp circular chromosome which consists of 3,790 protein-coding genes (86tRNA and 27rRNA genes). Based on genomic analysis, we identified genes involved in colonization and establishment inside the plant, biosynthesis of antibiotic compounds such as surfactin, plipapastatin, bacillibactin, and bacillaene, as well as the production of the phytohormones and volatile compounds which serve to promote the plants growth and development.

A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata

  • Hong, Chi Eun;Jeong, Haeyoung;Jo, Sung Hee;Jeong, Jae Cheol;Kwon, Suk Yoon;An, Donghwan;Park, Jeong Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.488-492
    • /
    • 2016
  • Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.

The Endophyte Curtobacterium flaccumfaciens Reduces Symptoms Caused by Xylella fastidiosa in Catharanthus roseus

  • Lacava, Paulo Teixeira;Li, Wenbin;Araujo, Welington Luiz;Azevedo, Joao Lucio;Hartung, John Stephen
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.388-393
    • /
    • 2007
  • Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be studied.

Induction of Defense Response Against Rhizoctonia solani in Cucumber Plants by Endophytic Bacterium Bacillus thuringiensis GS1

  • Seo, Dong-Jun;Nguyen, Dang-Minh-Chanh;Song, Yong-Su;Jung, Woo-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.407-415
    • /
    • 2012
  • An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. ${\beta}$-1,3-Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDS-PAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.

Inhibitory Effect of Disinfectants and Antibiotics on Rusty-root Symptoms in Panax Ginseng C. A. Meyer (소독제 및 항생제의 적변삼 발생 억제 효과)

  • Park, Hong-Woo;Lee, Eun-Jeong;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.6
    • /
    • pp.336-341
    • /
    • 2006
  • The endophytic bacteria were isolated from the rusty-root ginseng. This isolated bacteria were occurred the rusty-root ginseng with artificial inoculation. For the suppressing of rusty-ginseng, disinfectants, antibiotics, kitosan, micro-organisms and metabolites were tested to isolated endophytic bacterium. All of the isolated bacteria strains were sensitive sodium hypochlorite, however, some of isolated bacteria lines were sensitive to other tested materials. For example, D (didecyl dimethyl ammonium bromide), CIO$_2$, ODDA (octyldecyl dimethyl ammonium chloride + diocyul dimethyl ammonium chloride + alkyl diethyl benzyl ammonium chloride), GD (glutaraldehyde + dimethy cocobenzyl ammonium chloride) suppressed some of bacteria strains. Otherwise, some of antibiotics (e.g. ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin, rifampin, streptomycin, tetracycline) were sensitive to the isolated bacteria strains. All of isolated bacteria strainswere inhibitive to the mixed formation with neomycin and streptomycin, and neomycin and tetracycline. Both sodium hypochlorite and antibiotic mixing of neomycin and tetracycline were effective to prevention of rusty-root ginseng of sub-merging ginseng in the ginseng field.

Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

  • Hossain, Mohammad Tofajjal;Khan, Ajmal;Chung, Eu Jin;Rashid, Md. Harun-Or;Chung, Young Ryun
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.228-241
    • /
    • 2016
  • In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension ($2.0{\times}10^7cfu/ml$) to the rice rhizosphere reduced bakanae severity by 46-78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway.