• 제목/요약/키워드: Endocrine system

검색결과 311건 처리시간 0.024초

Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus

  • Kim, Hyun Chul;Lee, Chi Hoon;Hur, Sung Pyu;Kim, Byeong Hoon;Park, Jun Young;Lee, Young Don
    • 한국발생생물학회지:발생과생식
    • /
    • 제19권1호
    • /
    • pp.11-17
    • /
    • 2015
  • This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-${\beta}$, LH-${\beta}$ and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-${\beta}$, LH-${\beta}$ and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-${\beta}$, LH-${\beta}$ and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

Expression Profile of Neuro-Endocrine-Immune Network in Rats with Vascular Endothelial Dysfunction

  • Li, Lujin;Jia, Zhenghua;Xu, Ling;Wu, Yiling;Zheng, Qingshan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.177-182
    • /
    • 2014
  • This study was to determine the correlation between endothelial function and neuro-endocrine-immune (NEI) network through observing the changes of NEI network under the different endothelial dysfunction models. Three endothelial dysfunction models were established in male Wistar rats after exposure to homocysteine (Hcy), high fat diet (HFD) and Hcy+HFD. The results showed that there was endothelial dysfunction in all three models with varying degrees. However, the expression of NEI network was totally different. Interestingly, treatment with simvastatin was able to improve vascular endothelial function and restored the imbalance of the NEI network, observed in the Hcy+HFD group. The results indicated that NEI network may have a strong association with endothelial function, and this relationship can be used to distinguish different risk factors and evaluate drug effects.

스트레스와 면역기능 (Stress and Immune Function)

  • 고경봉
    • 정신신체의학
    • /
    • 제4권1호
    • /
    • pp.146-154
    • /
    • 1996
  • 스트레스와 면역기능 간의 관계는 중추신경계, 신경내분비계 및 면역계 간의 의사소통 즉 상호작용에 의해 이루어지고 있다. 중추신경계와 면역계가 상호작용하는 주요 경로는 임파조직의 신경계 wiring system과 신경내분비계다. 면역계는 neuropeptide를 생성하고 이것은 면역반응을 조절한다. 정신사회적 인자와 면역기능 간의 중개자로는 뇌하수체에서 방출되는 peptide, hormone 및 자율신경계 물질이 있다. 시상하부는 내분비계, 신경계 및 면역계를 통합하는 역활을 한다. 특히 시상하부의 paraventricular nucleus가 이 일에 중추적인 역할을 담당한다. 한편 내분비계는 면역계에 의해서 휘이드백을 받는다. 뇌하수체가 면역계를 조절하는 주요 경로로는 시상하부-뇌하수체-부신-흉선축, 시상하부-뇌하수체-성선-흉선축, 송과선-시상하부-뇌하수체축 등이 시사되고 있다. 스트레스와 면역계 간에는 양 방향의 경로가 있는 것으로 가정된다. 즉 스트레스가 면역계에 영향을 미칠 뿐만 아니라 면역계가 정신사회적 기능에 영향을 미칠 수 있다. 따라서 스트레스와 면역기능 간의 관계를 규명하기 위해서는 면역계, 내분비계, 자율신경계 및 뇌활동을 동시에 측정, 비교하여 이들을 통합할 필요가 있다.

  • PDF

Application of an Interferometric Biosensor Chip to Biomonitoring an Endocrine Disruptor

  • Kim, Byung-Woo;Lim, Sung-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.118-126
    • /
    • 2004
  • Recombinant E.coli ACV 1003 (recA::lacZ) releasing ${\beta}$-galactosidase by a SOS regulon system, when exposed to DNA-damaging compounds, have been used to effectively monitor endocrine disruptors. Low enzyme activity of less than 10 units/mL, corresponding to a $\mu\textrm{g}$/L(ppb) range of an endocrine disruptor (tributyl tin, bisphenol A. etc.), can be rapidly determined, not by a conventional time-consuming and tedious enzyme assay, but by an alternative interferometric biosensor. Heavily boron-doped porous silicon for application as an interferometer, was fabricated by etching to form a Fabry-Perot fringe pattern, which caused a change in the refractive index of the medium including ${\beta}$-galactosidase. In order to enhance the immobilization of the porous silicon surface, a calyx crown derivative (ProLinker A) was applied, instead of a conventional biomolecular affinity method using biotin. This resulted in a denser linked formation. The change in the effective optical thickness versus ${\beta}$-galactosidase activity, showed a linear increase up to a concentration of 150 unit ${\beta}$-galactosidase/mL, unlike the sigmoidal increase pattern observed with the biotin.

Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals

  • Eui-Man Jung;Seung Hyun Lee;Geun-Shik Lee
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.193-198
    • /
    • 2023
  • Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.

MECHANISM OF PHENOXY COMPOUNDS AS ANDROGENIC ENDOCRINE DISRUPTORS

  • Kim, Hyun-Jung;Kim, Won-Dai;Kwon, Taik-Hun;Kim, Dong-Hyun;Park, Yong-In;Dong, Mi-Sook
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.170-170
    • /
    • 2002
  • Phenxoy compounds, 2,4-Dichlorophenol acetoxyacid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them using in vivo and in vitro assay system.(omitted)

  • PDF

Protective Effect of Biopectin on 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induced Reproductive System Damage and Its Action Mechanism

  • Shim, Kyoo-Jung;Choung, Se-Young
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.118.1-118.1
    • /
    • 2003
  • A growing body of scientific research indicates that man-made chemicals (xenobiotics) may interfere with the normal functioning of endocrine, or hormone systems. These endocrine disruptors may cause a variety of problems with development, behavior, and reproduction. Amongst the xenobiotics the World Health Organization classed 2, 3, 7, 8-TCDD as a "known" human carcinogen. (omitted)

  • PDF

Bisphenol-A as Endocrine Disruptor Released from Lacquer Coating in Food Cans

  • Beung Ho, Ryu
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.19-23
    • /
    • 1999
  • Bisphenol-A and related conpounds recently have been reported to be estrogenic since it has been demonstrared in laboratory stuides that they mimic the effects of estrogen. Bisphenol-A refered to as "environmental estrogen" are suspected of causing health effect in living body through disruption of endocdrine system. In this review, the occurrence, environmental fate, and biological effects of bisphenol-A are presented. To provide understanding to the potential for endocrine disruption due to environmental estrogen, the physiology of bisphenol-A mammalian and fish is also reviewed. For empty can, the migrationof bisphenol-A form food conducted epoxy coating was effected by the test conditions and it increased in order to water and 4% acetic acid. Extracts from foods packed in lacquer coated can also showed estrogenic activity. Bisphenol-A was found as a contaminant not only in the liquid food cans, but also in water autoclave in can. The used of coating certain food-packaging material may require closer scrutiny to determine when bisphenol-A contribute to advert exposure of consumers to estrogenic xenobiotics. Human breast cancer MCF cell added bisphenol-A cultivated to study the ability of bisphenol-A to elicit of bisphenol-A estrogenic bioresponse in this system. Bisphenol-A, similar to estradiol, induced PR activation in transiently transfected anterior and posterior pituitary cells.

Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구 (Mechanism of Phenoxy Compounds as an Endocrine Disrupter)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • 제18권4호
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.

Safety effect of fermented oyster extract on the endocrine disruptor assay in vitro and in vivo

  • Lee, Hyesook;Hwangbo, Hyun;Ji, Seon Yeong;Oh, Seyeon;Byun, Kyung-A;Park, Joung-Hyun;Lee, Bae-Jin;Kim, Gi-Young;Choi, Yung Hyun
    • Fisheries and Aquatic Sciences
    • /
    • 제24권10호
    • /
    • pp.330-339
    • /
    • 2021
  • Oyster (Crassostrea gigas) is a marine bivalve mollusk widely distributed in coastal areas, and have been long widely used in industrial resources. Several studies demonstrated that fermented oyster (FO) extract attribute to bone health, but whether administration of FO play as an endocrine disruptor has not been studied. Therefore, in the present study, we investigated the effect of FO on the endocrine system in vitro and in vivo. As the results of the competitive estrogen receptor (ER) and androgen receptor (AR) binding affinities, FO was not combined with ER-α, ER-β, and AR. However, 17β-estradiol and testosterone, used as positive control, were interacted with ER and AR, respectively. Meanwhile, oral administration of 100 mg/kg and 200 mg/kg of FO doesn't have any harmful effect on the body weight, androgen-dependent sex accessory organs, estrogen-dependent-sex accessory organs, kidney, and liver in immature rats. In addition, FO supplementation has no effect on the serum levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, and 17β-estradiol. However, the relative weight of androgen- and estrogen-dependent organs were significantly increased by subcutaneously injection of 4.0 mg/kg of testosterone propionate (TP) and by orally administration of 1.0 ㎍ of 17α-ethynyl estradiol (EE) in immature male and female rats, respectively. Furthermore, TP and EE administration markedly decreased the serum LH and FSH levels, which are similar those of mature Sprague-Dawley (SD) rat. Furthermore, the testosterone and 17β-estradiol levels were significantly enhanced in TP and EE-treated immature rats. Taken together, our findings showed that FO does not interact with ER and AR, suggesting consequentially FO does not play as a ligand for ER and AR. Furthermore, oral administration of FO did not act as an endocrine disruptor including androgenic activity, estrogenic activity, and abnormal levels of sex hormone, indicating FO may ensure the safety on endocrine system to develop dietary supplement for bone health.