• Title/Summary/Keyword: Endocrine disrupting chemical

Search Result 92, Processing Time 0.023 seconds

1,3-Dichloro-2-Propanol (1,3-DCP) Induced Cell Damage (1,3-Dichloro-2-Propanol (1,3-DCP)에 의한 세포의 손상기전)

  • Jeong, Ji-Hak;Sin, Ik-Jae;Sin, Yeong-Min;Park, Heung-Jai;An, Won-Gun
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.219-225
    • /
    • 2007
  • Endocrine disrupting compounds (EDC's) are chemicals that either mimic endogenous hormones interfering with pharmacokinetics or act by other mechanisms. Some endocrine disrupters were reported to be chemical substances that cause apoptosis in cells. A number of reports have indicated that 1,3-DCP, one of the EDC's may act as an endocrine disrupter and also has possible carcinogenic effects. 1,3-DCP, present in commercial protein hydrolysates used for human nutrition, are genotoxic and 1,3-dichloro-2-propanol induced tumors in rats. In the present study, it was investigated whether 1,3-DCP induces ROS generation and apotosis in A549 adenocarcinoma cells. Here we show that 1,3-DCP inhibits the growth of lung cancer cell lines and generates reactive oxygen species (ROS), a major cause of DNA damage and genetic instability, It was investigated that 1,3-DCP increases G1 phase cells after 12 hours, thereafter abruptly draws A549 cells to G0 state after 24 hours by flow cytometric analysis. 1,3-DCP induces p53 and $p21^{Cip1/WAF1}$ activation time- and dose-dependently by 24 hours, while the level $p21^{Cip1/WAF1}$ was decreased after 48 hours. These results suggest that 1,3-DCP, an EDC's generates ROS and regulates genes involved with cell cycle and apoptosis.

Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions

  • Tiwari, Diwakar;Sailo, Lalsaimawia;Yoon, Yi-Yong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • The aim of this study is to assess the applicability of ferrate(VI) in the efficient treatment of aqueous waste contaminated with potassium hydrogen phthalate (KHP) which is known to be a potent endocrine disrupting chemicals. Simulated batch reactor operations were conducted at a wide range of pH (7.0 to 12.0) and molar ratios of KHP to ferrate(VI). Kinetic studies were performed in the degradation process and overall rate constant was found to be 83.40 L/mol/min at pH 8.0. The stoichiometry of ferrate(VI) and KHP was found to be 1:1. Further, lower pH values and higher KHP concentrations were favoured greatly the degradation of KHP by ferrate(VI). Total organic carbon analysis showed that partial mineralization of KHP was achieved. The presence of several background electrolytes were studied in the degradation of KHP by ferrate(VI).

Exposure Monitoring of Nonylphenol in Preterm Breast milk in Seoulers (서울 거주 산모의 초유 중 노닐페놀 분석을 통한 인체노출평가)

  • Yi, Bit-Na;Kim, Chang-Sung;Park, Mi-Jung;Han, Yu-Sok;Lee, So-Jung;Yan, Mi-Hi
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Biomonitoring of nonylphenol (NP), an endocrine disrupting chemical, is required in Korea to perform its proper regulation. Thus, we analyzed exposure levels of nonlyphenol (NP) in breast milk from the mothers who delivered babies within 10 days (N=325). We analyzed free and total forms of NP in breast milk with LC/MS/MS (LOD, 0.5 ppb). In addition, we obtained questionnaires concerning lifestyle from the subject. As results, ranges of total NP were ${\mu}g/L$ (median, $3.51{\pm}4.98{\mu}g/L$ vs. normal, N=281, $2.07{\pm}3.76{\mu}g/L$; p<0.05). In conclusion, we suggest that exposure monitoring of NP should be continuously performed, even though the risks of NP are not clear, yet.

Combined Isobutoxycarbonylation and tert-Butyldimethylsilylation for the GC/MS-SIM Detection of Alkylphenols, Chlorophenols and Bisphenol A in Mackerel Samples

  • Kim, Hyub;Hong, Jong-Ki;Kim, Yong-Hwa;Kim, Kyoung-Rae
    • Archives of Pharmacal Research
    • /
    • v.26 no.9
    • /
    • pp.697-705
    • /
    • 2003
  • The alkylphenols, chlorophenols, and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) followed by two work-up methods for comparison: isobutoxycarbonyl (isoBOC) derivatization and tert-butyldimethylsilyl (TBDMS) derivatization. Eleven endocrine disrupting chemicals (EDCs) of phenols in biological samples were extracted with acetonitrile and then the acetonitrile layer underwent freezing filtration 6$0^{\circ}C$ for 2 hours. Solid-phase extraction (SPE) was used with XAD-4 and subsequent conversion to isoBOC or TBDMS derivatives for sensitivity analysis with the GC/MS-SIM mode. For isoBOC derivatization and TBDMS derivatization the recoveries were 92.3∼150.6% and 93.8∼108.3%, the method detection limits (MDLs) of bisphenol A for SIM were 0.062 $\mu$ g/kg and 0.010 $\mu$ g/kg, and the SIM responses were linear with the correlation coefficient varying by 0.9755∼0.9981 and 0.9908∼0.9996, respectively. When these methods were applied to mackerel samples, the concentrations of the 11 phenol EDCs were below the MDL.

Proteome in Toxicological Assessment of Endocrine Disrupting Chemicals (프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구)

  • 김호승;계명찬
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.87-100
    • /
    • 2003
  • It is important to understand the potential human health implications of exposure to environmental chemicals that may act as hormonally active agents. It is necessary to have an understanding of how pharmaceutical and personal care products and other chemicals affect the ecosystem of our planet as well as human health. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. Research continues to support the theory of endocrine disruption. However, endocrine disruption researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of tonicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2D/E) and MALDI-TOF mass spectrometry (MS) sr protein chip array and SELDI-TOF MS. Proteomics have an opportunity to play an important role in resolving the question of what role endocrine disruptors play in initiating human disease. Proteomics can also play an imfortant role in the evaluation of the risk assessment and use of risk management and risk communication tools required to address public health concerns related to notions of endocrine disruptors. Understanding the need for the proteomics and possessing knowledge of the developing biomakers used to abbess endocrine activity potential will he essential components relevant to the topic of endocrine disruptors.

Disturbing Effects of Chronic Low-dose 4-Nonylphenol exposing on Gonadal Weight and Reproductive Outcome over One-generation

  • Cha, Sunyeong;Baek, Jeong Won;Ji, Hye Jin;Choi, Jun Hee;Kim, Chaelim;Lee, Min Young;Hwang, Yeon Jeong;Yang, Eunhyeok;Lee, Sung-Ho;Jung, Hyo-il;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.121-130
    • /
    • 2017
  • 4-Nonylphenol (NP) is a surfactant that is a well-known and widespread estrogenic endocrine disrupting chemical (EDC). Although it has been known that the affinity of NP to ERs is low, it has been suggested that low-dose NP has toxicity. In the present study, the endocrine disrupting effects on reproduction, and the weight of gonads, epididymis, and uterus were evaluated with the chronic lower-dose NP exposing. This study was designed by following the OECD test guideline 443 and subjected to a complete necropsy. In male, NP had an effect on the weight of the testis and epididymis in both $F_0$ and $F_1$. In females, NP decreased the weight of ovary and uterus in $F_0$ but not in pre-pubertal $F_1$ pubs. Fertility of male and female in $F_0$ or $F_1$ was no related with NP administration. The number of caudal-epididymal sperm by body weight (BW) was not different between groups in both $F_0$ and $F_1$. Besides, the difference of the sperm number between generations was not detected. The number of ovulated oocytes was similar between groups in $F_0$, but significantly decreased in NP 50 group of $F_1$. The litter size and sex ratios of offspring in $F_1$ and $F_2$ were not different. The accumulated mating rate and gestation period were not affected by the NP administration. Those results shows that chronic lower-dose NP administration has an effect of endocrine disruptor on the weight of gonads and epididymis of $F_0$ and $F_1$ but not in reproduction. Based on the results, it is suggested that chronic lower-dose NP exposing causes endocrine disruption in the weight of gonad and epididymis but not in the reproductive ability of next generations.

PCBS IN KOREAN ADIPOSE TISSUE AND THEIR ENDOCRINE DISRUPTING EFFECTS

  • Kim, Dae-Hyun;Oh, Seung-Min;Ham, Byung-Woo;Chung, Kyu-Hyuck
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.177-177
    • /
    • 2001
  • Polychlorinated biphenyls(PCBs) are members of the halogenated aromatic group of environmental pollutants. Because of their unique physical and chemical properties, notably their stability and widespread use, PCBs are sidely distributed and transported throughout the global environment. In fact, residues of PCBs have been identified in air, water, aquatic and marine sediments, and human tissue samples.(omitted)

  • PDF

Environmental Chemical-Dioxin Impacts on Biological Systems: A Review

  • Vo, Thuy Thi Bich;Le, Binh Thi Nguyen;Nong, Hai Van;Yang, Hyun;Jeung, Eui-Bae
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.95-111
    • /
    • 2013
  • Worldwide there is concern about the continuing release of a broad range of environmental endocrine disrupting chemicals, including polychlorinated biphenyls, dioxins, phthalates, polybrominated diphenyl ethers (PBDEs), and other halogenated organochlorines persistent organic pollutants (POPs) into the environment. They are condemned for health adverse effects such as cancer, reproductive defects, neurobehavioral abnormalities, endocrine and immunological toxicity. These effects can be elicited via a number of mechanisms among others include disruption of endocrine system, oxidation stress and epigenetic. However, most of the mechanisms are not clear, thus several number of studies are ongoing trying to elucidate them in order to protect the public by reducing these adverse effects. In this review, we briefly limited review the process, the impacts, and the potential mechanisms of dioxin/dioxin like compound, particularly, their possible roles in adverse developmental and reproductive processes, diseases, and gene expression and associated molecular pathways in cells.

Non-Ionic Surfactants Antagonize Toxicity of Potential Phenolic Endocrine-Disrupting Chemicals, Including Triclosan in Caenorhabditis elegans

  • Alfhili, Mohammad A.;Yoon, Dong Suk;Faten, Taki A.;Francis, Jocelyn A.;Cha, Dong Seok;Zhang, Baohong;Pan, Xiaoping;Lee, Myon-Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1052-1060
    • /
    • 2018
  • Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment ($LC_{50}$: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.