• Title/Summary/Keyword: End-of-Life Recovery

Search Result 72, Processing Time 0.026 seconds

Planning Demand- and Legislation-Driven Remanufacturing for a Product Family: A Model for Maximizing Economic and Environmental Potential

  • Kwak, Minjung
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.159-174
    • /
    • 2015
  • Remanufacturing used, end-of-life products is a complex problem involving multiple types of products that may share common parts. Recovery targets assigned by market demand and environmental legislation add more difficulty to the problem. Manufacturers now need to achieve specified take-back and recovery rates while fulfilling demands for remanufactured products. To assists in the demand- and legislation-driven remanufacturing of a family of products (i.e., multiple products that share common parts), this paper introduces a bi-objective mixed integer linear programming (MILP) model for optimizing remanufacturing. The model identifies optimal remanufacturing plans for a product family, whereby, the remanufacturer can achieve demand and recovery targets more profitably and in an environmentally-friendly manner. The model can also be used to quantify and justify the economic and environmental benefits of a product family from a remanufacturing perspective. A case study is presented for remanufacturing an alternatorfamily of products.

Disassembly and Classification for Recovery of EOL Products

  • Min, Sun-Dong;Matsuoka, Shinobu;Muraki, Masaaki
    • Industrial Engineering and Management Systems
    • /
    • v.2 no.1
    • /
    • pp.35-44
    • /
    • 2003
  • Recovery of end-of-life (EOL) products is an environmentally and economically sound way to achieve many of the goals of sustainable development. Many product recovery systems are dependent upon destructive disassembly such as shredding, which undesirably causes a large volume of shredder dust and makes parts reuse impossible. Although non-destructive disassembly has been considered as an alternative for solving the problems, the classification of disassembled items has not been sufficiently investigated. In this paper, we propose a model that mathematically optimizes the disassembly and classification of EOL products. Based on the AND/OR graph that illustrates all possible disassembly sequences of a given product, we identify the physical properties that are considered as constraints in the model. As a result of the solution procedure, the recovery problem can be transformed into a mixed integer linear programming (MILP) model. We show an example that illustrates the concept of our model.

Development of Triboelectrostatic Separation Technique for Recovery of Nylon from Radiator of End-of-Life Vehicle (폐자동차(廢自動車) 라디에이터로부터 Nylon 회수(回收)를 위한 마찰하전정전선별(摩擦荷電靜電選別) 기술개발(技術開發))

  • Baek, Sang-Ho;Jeon, Ho-Seok;Kim, Su-Gang;Lee, Kwang-Hoon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The study on the recovery of Nylon from a radiator of End-of-Life Vehicle was conducted by using triboelectrostatic separation technique. For the effective separation of the sample(Nylon, PP glass), charge polarity and amount of each sample with various charging materials have been investigated by faraday cage. And then, charging material was selected as carrying out basic separation experiments with materials that can be possible to polarize samples. Finally, the continuos type triboelectrostatic separator was developed with selected charging material and the recovery possibility of the sample was confirmed as carrying out various separation experiments.

Disassembly Priority for Recoverying Remanufacturable Parts(Core) in ELV (ELV에서 재제조 부품을 회수하기 위한 해체 우선순위)

  • Son, Woo Hyun;Park, Sang Jin;Mok, Hak Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.591-598
    • /
    • 2019
  • Today, due to the development of the industrial society, the need for sustainable research and development for energy depletion and environmental protection is increasing. Among sustainable research, remanufacturing is an ideal way to meet environmental and economic aspects. In this paper, we investigated the End-of-Life Vehicle(ELV) in order to find the recovery method of the core which is the preceding stage of remanufacturing. The number of End-of-Life Vehicle is increasing year by year, but the core recovery rate from ELV is still low. Therefore, a methodology to determine the disassembly priority of each part is proposed to increase the core recovery rate. Based on the analysis Table through the disassembly process, the decision rule was selected and the weighted score evaluation Table was completed to complete the disassembly priority system. Finally, evaluation was made on gasoline vehicles to determine priorities.

Recovery of Indium for the Recycling of End-of-life Flat Panel Display Devices (폐 디스플레이 재활용을 위한 인듐 회수기술)

  • Uhm, Sunghyun;Cho, Sungsu;Lee, Sooyoung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.389-393
    • /
    • 2015
  • Recovery of indium from secondary sources have been attracting over years not only because of increasing demand together with development of flat panel display industry but also industrial criticality of indium. Applied technology to recover indium for recycling of end-of-life FPD devices can be broadly divided into three major steps, disassembly or dismantling, enrichment or upgrading, and refining or purification. In addition, advanced technology such as zone-refining can be employed for ultra-high purity products. In this mini-review, we present currently applied technologies for recovery of indium and the outlook for total recycling of FDP devices.

Pediatric Nurses' Perceptions related to End-of-Life Care and Turnover Intention (아동의 임종에 관한 간호사의 인식과 이직 의도)

  • Baek, Sook Young;Kang, Sook Jung
    • Child Health Nursing Research
    • /
    • v.24 no.4
    • /
    • pp.353-363
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate pediatric nurses' perceptions regarding in end-of-life care and turnover intention. Methods: A cross-sectional descriptive study was performed among 111 hospital nurses. Pediatric nurses' perceptions of obstacles and supportive behaviors were measured using the Pediatric Nurses' Perceptions of End of Life Care Questionnaire which was translated into Korean and turnover intention was measured using the Korean Nurse Turnover Intention Scale (K-NTIS). Results: The supportive behavior with the highest perceived magnitude was 'Physicians who are compassionate, but very clear about prognosis.' The obstacle with the highest perceived magnitude was 'Instigating painful treatments when there is no hope of recovery.' Pediatric nurses' perceptions of obstacles in end-of-life care showed statistically significant differences depending on whether nurses received end-of-life care education (t=2.02, p=.046). The perception of obstacles in end-of-life care was positively correlated with turnover intention (intensity r=.28, p=.002) (frequency r=.20, p=.027). Conclusion: These results suggest that pediatric nurses' perception of obstacles and supportive behaviors in end-of-life care need to be assessed when considering turnover intention. Furthermore, psychological counseling should be offered to nurses to prevent burnout and reduce moral distress which is correlated with the turnover rate.

A Study for Improving the Vehicle Dismantling and Recycling System of Korea (한국의 자동차 해체·재활용 제도 개선 연구)

  • Lyou, Byung-Woon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2016
  • In Korea, the Vehicle Dismantler and Recycler industry is supervised by the Ministry of Land, Infrastructure and Transport under the Automobile Management Act. Also, Korean Automotive recycling businesses are supervised by the Minister of Environment under the Resource Recirculation Act. The main concern of the Minister of Environment is how the wastes from Dismantled vehicles will be environmentally removed, stored, treated, recycled or disposed. In 2000, the European Union (EU) adopted the End-of-Life Vehicles Directive (2000/53/EC) which required Members to ensure the collection, treatment and recovery of end-of-life vehicles (ELVs). The Directive, the most tightly regulated and precautionary legal systems, required that the last owner of a vehicle could drop off the ELV at an authorized treatment facility and that the producers of the ELV should pay the cost of the program. The adoption of the ELVs directive has led the development of Automotive Dismantler and Recycler networks to reuse, refurbish, remanufacture, recycle and recover parts and materials embedded in ELVs. Also, the ELVs directive which has had an insignificant impact on Korean manufacturers has strong presence in the European market and has been successfully externalized on them. The Korean manufacturers not only achieve the 85% recycling target set by the ELVs directive but also meet the Extended Producer Responsibility (EPR) which requires manufacturers to contribute dismantling process. In order to improve the Korean vehicle dismantling and recycling system, the Automobile Management Act and the Resource Recirculation Act should be harmonized. Particularly the roles of the Ministry of Land, Infrastructure and Transport and the Minister of Environment should be sharply divided. Like Japan, the ELV management needs to be highly centralized, regulated, and controlled by the ministry specialized in Vehicle, namely the Ministry of Land, Infrastructure and Transport and the sub organizations. Like EU Members, recovery, reuse, and recycling must be distinguished. Recovery is defined as the final productive use of the parts and materials embedded in ELVs, which includes reuse and remanufacture of parts and recycling of the other materials. Dismantling process and reuse and remanufacture of parts must be governed by the Ministry of Land, Infrastructure and Transport. For environmental recycling or disposal of waste materials, such as CFCs, glass and plastic material, and toxic substances, governmental financial support system should be in place.

Different Responses in Brain Regions upon Heat Shock in Adult Zebrafish (Danio rerio)

  • Hwang, Chang-Nam;Lee, Dong-Ho;Lee, Sang-Ho
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • HSP70 has widely been induced in in vivo hyperthermia conditions in various organisms to study gene regulation and recently neuroprotectve roles of the induced gene expression under varying conditions. We investigated different responses among various tissues in zebrafish under heat shock to evaluate whether spatial and temporal expression pattern of zebrafish (z) hsp70 in transcriptional and translational level under heat shock stress in different brain regions. Heat shock groups were given for 1 h at $37^{\circ}C$ after recovery by transferring the treated animals back to $28^{\circ}C$ for 1, 2 and 24 h for recovery, respectively. Control (CTRL) group was kept at $28^{\circ}C$. At the end of treatments, five animals were collected and used for isolation of total RNAs and peptides from the corresponding tissues. Expression of zhsp70 mRNA showed different patterns in recovery periods in the tissues including the brain, eye, intestines, muscles, heart and testis by RT-PCR. Unlike the RT-PCR analysis, Northern blot analysis demonstrated nearly 30-fold increase in zhsp70 at 1 h heat shock, suggesting that RT-PCR may not be appropriate in unmasking regulation of the time-dependent zhsp70 expression. In the experiment involving different brain regions, the cerebellum showed gradual activation at 1 h to R1h and decreases in R2h and R24h, while the medulla oblongata and optic tectum showed gradual increase at R1h and decrease at R24h, indicating that different brain tissues respond specifically to heat shock in inducing zhsp70 and recovering from the heat shock status. Western blot analysis also demonstrated that the intracellular levels of zHSP70 in three different brain regions including the cerebellum, medulla oblongata and optic tectum are differently induced and recovered to normal state. These results clearly demonstrate that different regions of the body and the brain tissues are responding differently to heat shock in the aspects of its level of expression and speed of recovery.

  • PDF

Lithium ion car batteries: Present analysis and future predictions

  • Arambarri, James;Hayden, James;Elkurdy, Mostafa;Meyers, Bryan;Abu Hamatteh, Ziad Salem;Abbassi, Bassim;Omar, Waid
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.699-710
    • /
    • 2019
  • Electric vehicles (EVs) are spreading rapidly and many counties are promoting hybrid and fully EVs through legislation. Therefore, an increasing amount of lithium ion batteries will reach the end of their usable life and will require effective and sustainable end-of-life management plan which include landfill disposal or incineration. The current research focuses on more sustainable methods such as remanufacturing, reuse and recycling in order to prepare for future battery compositions and provide insights to the need recycling methods to be developed to handle large amounts of batteries sustainably in the near future. The two most prominent material recovery techniques are hydrometallurgy and pyrometallurgy which are explored and assessed on their relative effectiveness, sustainability, and feasibility. Hydrometallurgy is a superior recycling method due to high material recovery and purity, very low emissions, high prevalence of chemical reuse and implementation of environmentally sustainable compounds. Expanding recycling technologies globally should take the research and technologies pioneered by Umicore to establish a sustainable recycling program for end-of-life EVs batteries. Emerging battery technology of Telsa show the most effective designs for high performance batteries includes the use of silicon which is expected to increase capacity of batteries in the future.

End-of-Life Vehicle Rating Classification for Remanufacturing Core Collection (재제조 코어 회수를 위한 폐자동차 등급 분류)

  • Son, Woo Hyun;Li, Wen Hao;Mok, Hak Soo
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.11-23
    • /
    • 2018
  • The need for remanufacturing automotive parts is required due to the depletion of resources, rising raw material prices and strengthening environmental regulations. For remanufacturing, stable supply and demand of core must be accompanied. At present, remanufacturing companies collect cores through various routes, but the recovery rate of cores from the End-of-Life Vehicles is low. If we can systematically collect cores from hundreds of thousands of ELVs that were generated each year, the recovery rate of the core for remanufacturing will be further improved. Therefore, in this paper, we tried to establish a classification system for the ELV as a method for collecting the cores from the ELV. First, we selected the elements affecting the classification and determined the scope for the evaluation. The final rating classification is established by calculating the weights among the influence elements. Finally, through the case study, the dismantling grade of the actual ELV was evaluated to derive the second grade.